Skip to content

pfnet-research/pfgen-bench

Repository files navigation

Preferred Generation Benchmark

pfgen-benchmark is a benchmark designed to evaluate Japanese text generation specifically for pretrained models. Unlike conventional benchmarks that use templates containing instructions, this benchmark relies solely on providing numerous examples. By conveying expectations such as the question-answering nature of the task, responses of approximately 100 characters, and outputs resembling formal public documents purely through examples, it minimizes the influence of differences in instructions or templates. Additionally, output evaluation is conducted using n-gram-based methods, enabling quick, cost-effective, and deterministic evaluations, unlike the LLM as a Judge approach.

To enable comparisons across as many models as possible, the leaderboard actively includes a wide range of models. These include openly accessible models, models mentioned in academic papers, and those announced by companies through press releases. Contributions of model outputs are encouraged, and results can be submitted via pull requests. For detailed instructions on how to contribute, please refer to the "How to Contribute" section.

See more details: TBD (arxiv)

pfgen-benchmark は事前学習モデル向けに設計された日本語の生成文を評価するベンチマークです。通常のベンチマークでは指示文を含むテンプレートを使いますが、このベンチマークでは多数の例示のみを行います。質問応答タスクであることや、約100字の回答、公用文に近い出力を期待していることを例示のみで伝えることで、指示文やテンプレートの差異による影響を小さくしています。また、出力文の評価は n-gram を用いた方法を用いており、LLM as a Judge の手法と異なり、短時間、低コストでかつ決定的な評価を可能にしています。

詳しくはこちら: Jxiv preprint

できる限り多くのモデルを同じ軸で比較できるように、リーダーボードには積極的に多くのモデル掲載しています。オープンにアクセス可能なモデル、論文で言及されているモデル、企業がプレスリリースを出しているモデルなど、比較の価値があると思われるモデルについては、是非プルリクエストで出力を追加してください。追加方法については「How to contribute」を参照ください。

License of LLM output

The license of the parts of this repository other than the output of LLM is Apache License Version 2.0. The license of the output of LLM depends on the license of each model.

How to evaluate model

You can evaluate the model using run-hf.py (which uses transformers) or run-vllm.py (which uses vLLM). For detailed parameters, refer to --help. The --num-trials parameter, which is the number of patterns for which the model will generate answers, should be decided considering the trade-off between execution time and required accuracy.

# Run a model using Huggingface library or vLLM.
python ./run-hf.py --model=pfnet/plamo-13b --num-trials=5

# Evaluate output and update leaderboard.
make

How to contribute

Follow the instructions in the "How to Evaluate Model" section to run the evaluation. This process will generate config.json and trials.jsonl.xz files under the result directory. Please create a pull request containing only these two files.

To ensure more accurate ranking among models, the number of executions (--num-trials) should be as many as possible, within the limit of 100 trials.

Leaderboard

Rank Score                    Model                                       Length           Fluency Truthfulness Helpfulness
N/A 1.0501 (±0.0000/√1) 👑 system/ground-truth 100.0 (±0.0) 1.155 0.996 1.000
1 0.9303 (±0.0083/√10) 💬 anthropic/claude-3-5-sonnet-20240620 102.2 (±10.4) 0.949 0.959 0.883
2 0.9144 (±0.0037/√2) 💬 deepseek-ai/DeepSeek-V3 87.4 (±14.9) 0.960 0.983 0.800
3 0.8615 (±0.0092/√10) 💬 openai/gpt-4o 84.5 (±18.6) 0.919 0.980 0.686
4 0.8584 (±0.0163/√10) 💬 deepseek-ai/DeepSeek-R1 106.1 (±13.5) 0.839 0.929 0.807
N/A 0.8494 (±0.0253/√1000) 🎯 system/criteria 100.0 (±3.4) 0.936 0.978 0.505
5 0.8279 (±0.0131/√10) 💬 MiniMax-Text-01 77.8 (±22.2) 0.858 0.988 0.638
6 0.8270 (±0.0229/√10) 💬 anthropic/claude-3-opus-20240229 102.3 (±9.5) 0.911 0.944 0.627
7 0.8157 (±0.0119/√10) 💬 MiniMax-Text-01 78.9 (±25.5) 0.850 0.986 0.611
8 0.8059 (±0.0169/√5) 💬 google/gemini-2.0-flash-exp 68.0 (±17.7) 0.834 0.984 0.600
9 0.8036 (±0.0133/√10) 💬 openai/gpt-4-turbo 86.5 (±17.4) 0.820 0.959 0.632
10 0.7916 (±0.0146/√10) 💬 openai/gpt-4 107.2 (±11.6) 0.888 0.951 0.536
11 0.7827 (±0.0129/√100) 💬 Qwen/Qwen2.5-72B-Instruct 98.7 (±14.8) 0.871 0.936 0.540
12 0.7789 (±0.0213/√100) 🟢 weblab-GENIAC/Tanuki-8x8B-dpo-v1.0 109.1 (±36.8) 0.890 0.941 0.506
13 0.7782 (±0.0154/√100) 💬 Qwen/Qwen2.5-72B-Instruct 96.5 (±17.8) 0.847 0.939 0.549
14 0.7773 (±0.0168/√100) 💬 pfnet/plamo-1.0-prime 178.2 (±114.5) 0.874 0.942 0.516
15 0.7768 (±0.0113/√5) 💬 mlx-community/Qwen2.5-72B-Instruct-4bit 100.8 (±17.7) 0.860 0.933 0.538
16 0.7766 (±0.0276/√100) 🟢 tokyotech-llm/Swallow-70b-NVE-hf 104.1 (±17.9) 0.884 0.938 0.507
17 0.7756 (±0.0264/√100) 🟢 tokyotech-llm/Swallow-70b-NVE-instruc... 104.1 (±18.5) 0.878 0.938 0.510
18 0.7748 (±0.0000/√1) 💬 openai/chatgpt-o1 76.3 (±17.7) 0.755 0.960 0.610
19 0.7650 (±0.0263/√100) 🟢 tokyotech-llm/Swallow-70b-instruct-hf 102.5 (±14.4) 0.872 0.929 0.494
20 0.7643 (±0.0000/√1) 💬 openai/chatgpt-o1-pro 79.5 (±17.3) 0.748 0.955 0.590
21 0.7628 (±0.0275/√100) 🟢 tokyotech-llm/Swallow-70b-hf 103.5 (±16.1) 0.876 0.930 0.483
22 0.7601 (±0.0289/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-70B-v0.1 106.3 (±21.0) 0.864 0.925 0.492
23 0.7538 (±0.0251/√100) 🟢 turing-motors/Llama-3-heron-brain-70B... 101.1 (±16.9) 0.857 0.925 0.479
24 0.7501 (±0.0237/√100) 💬 weblab-GENIAC/Tanuki-8x8B-dpo-v1.0 181.0 (±87.4) 0.847 0.923 0.480
25 0.7469 (±0.0270/√100) 🟢 pfnet/plamo-100b-base 115.2 (±64.0) 0.861 0.920 0.460
26 0.7444 (±0.0260/√100) 🟢 sbintuitions/sarashina2-70b 120.0 (±49.4) 0.825 0.923 0.485
27 0.7423 (±0.0302/√100) 💬 cyberagent/Llama-3.1-70B-Japanese-Ins... 199.2 (±110.3) 0.817 0.905 0.505
28 0.7392 (±0.0232/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-70B-I... 93.6 (±23.5) 0.847 0.941 0.429
29 0.7370 (±0.0217/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-70B-I... 97.5 (±19.8) 0.846 0.932 0.433
30 0.7365 (±0.0218/√100) 🟢 CohereForAI/c4ai-command-r-plus 107.5 (±42.3) 0.818 0.913 0.478
31 0.7336 (±0.0254/√100) 🟢 tokyotech-llm/Llama-3-Swallow-70B-v0.1 108.2 (±24.7) 0.837 0.908 0.456
32 0.7320 (±0.0201/√10) 💬 anthropic/claude-3-sonnet-20240229 114.3 (±18.9) 0.810 0.910 0.476
33 0.7317 (±0.0101/√100) 💬 microsoft/phi-4 111.7 (±29.4) 0.833 0.913 0.449
34 0.7261 (±0.0169/√100) 💬 microsoft/phi-4 107.6 (±27.9) 0.829 0.922 0.426
35 0.7249 (±0.0247/√100) 💬 cyberagent/calm3-22b-chat 136.8 (±46.7) 0.813 0.907 0.455
36 0.7246 (±0.0250/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-70B-I... 89.8 (±33.9) 0.812 0.940 0.422
37 0.7242 (±0.0156/√100) 🟢 microsoft/phi-4 102.5 (±12.7) 0.864 0.924 0.385
38 0.7217 (±0.0219/√100) 🟢 cyberagent/calm3-22b-chat 105.0 (±13.1) 0.824 0.916 0.425
39 0.7194 (±0.0321/√10) 💬 google/text-bison 77.6 (±31.9) 0.790 0.968 0.401
40 0.7185 (±0.0000/√1) 💬 elyza/Llama-3-ELYZA-JP-70B 98.6 (±33.8) 0.837 0.931 0.388
41 0.7175 (±0.0257/√100) 🟢 nvidia/nemotron-4-340b-instruct 107.3 (±28.4) 0.816 0.908 0.429
42 0.7084 (±0.0207/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-In... 95.9 (±19.7) 0.835 0.930 0.360
43 0.7046 (±0.0248/√100) 💬 nvidia/nemotron-4-340b-instruct 94.5 (±39.1) 0.768 0.910 0.435
44 0.7024 (±0.0238/√100) 🟢 rinna/nekomata-14b 104.3 (±18.0) 0.812 0.912 0.383
45 0.7023 (±0.0271/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-v0.2 112.6 (±33.2) 0.818 0.901 0.388
46 0.7008 (±0.0318/√100) 🟢 tokyotech-llm/Swallow-13b-instruct-hf 104.5 (±13.0) 0.812 0.898 0.392
47 0.6990 (±0.0288/√100) 🟢 tokyotech-llm/Swallow-13b-NVE-hf 106.2 (±19.2) 0.820 0.906 0.371
48 0.6980 (±0.0252/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-8B-In... 98.7 (±50.0) 0.798 0.927 0.369
49 0.6958 (±0.0236/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-In... 92.9 (±20.0) 0.814 0.931 0.343
50 0.6945 (±0.0300/√100) 🟢 sbintuitions/sarashina2-13b 107.8 (±28.3) 0.794 0.900 0.390
51 0.6938 (±0.0217/√100) 🟢 weblab-GENIAC/Tanuki-8B-dpo-v1.0 111.5 (±22.8) 0.800 0.893 0.389
52 0.6924 (±0.0232/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-70B-I... 74.1 (±31.4) 0.755 0.948 0.373
53 0.6891 (±0.0255/√100) 🟢 tokyotech-llm/Swallow-13b-hf 104.8 (±17.7) 0.811 0.901 0.355
54 0.6853 (±0.0201/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-In... 96.6 (±18.8) 0.815 0.919 0.322
55 0.6794 (±0.0243/√100) 🟢 cyberagent/Llama-3.1-70B-Japanese-Ins... 128.8 (±72.2) 0.764 0.883 0.391
56 0.6759 (±0.0232/√10) 🟢 meta-llama/Meta-Llama-3.1-405B 101.2 (±15.1) 0.767 0.892 0.368
57 0.6745 (±0.0152/√10) 💬 google/gemini-1.5-pro-001 52.4 (±15.0) 0.666 0.980 0.377
58 0.6737 (±0.0276/√100) 🟢 sbintuitions/sarashina1-13b 105.4 (±23.4) 0.775 0.882 0.364
59 0.6715 (±0.0284/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-v0.1 107.5 (±22.2) 0.787 0.881 0.347
60 0.6697 (±0.0277/√100) 🟢 nvidia/nemotron-4-340b-base 106.9 (±26.5) 0.768 0.884 0.357
61 0.6677 (±0.0250/√100) 🟢 llm-jp/llm-jp-3-13b 101.1 (±9.7) 0.770 0.884 0.349
62 0.6673 (±0.0225/√100) 🟢 sbintuitions/sarashina1-65b 104.2 (±20.0) 0.776 0.894 0.332
63 0.6663 (±0.0262/√100) 🟢 tokyotech-llm/Swallow-7b-plus-hf 106.1 (±18.1) 0.780 0.880 0.339
64 0.6656 (±0.0169/√10) 💬 google/gemini-1.5-flash-001 55.1 (±21.7) 0.687 0.967 0.342
65 0.6625 (±0.0140/√10) 💬 anthropic/claude-3-haiku-20240307 81.9 (±31.0) 0.747 0.943 0.298
66 0.6590 (±0.0133/√10) 💬 google/gemini-2.0-flash-thinking-exp-... 49.8 (±11.0) 0.639 0.984 0.354
67 0.6572 (±0.0518/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-8B-In... 108.9 (±63.7) 0.764 0.895 0.313
68 0.6473 (±0.0182/√100) 💬 Qwen/Qwen2-72B-Instruct 108.7 (±24.8) 0.703 0.853 0.386
69 0.6456 (±0.0255/√100) 🟢 sbintuitions/sarashina2-7b 105.6 (±22.8) 0.746 0.874 0.316
70 0.6447 (±0.0251/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-8B-In... 74.3 (±31.3) 0.706 0.934 0.294
71 0.6445 (±0.0241/√100) 🟢 tokyotech-llm/Llama-3-Swallow-8B-v0.1 110.3 (±28.4) 0.748 0.867 0.319
72 0.6406 (±0.0139/√100) 💬 Qwen/QwQ-32B-Preview 119.1 (±72.2) 0.730 0.897 0.294
73 0.6399 (±0.1763/√100) 💬 turing-motors/Llama-3-heron-brain-70B... 155.4 (±101.8) 0.718 0.805 0.397
74 0.6368 (±0.0207/√100) 🟢 tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1 105.5 (±21.0) 0.753 0.870 0.287
75 0.6350 (±0.0260/√100) 🟢 karakuri-ai/karakuri-lm-8x7b-instruct... 104.0 (±16.9) 0.755 0.863 0.287
76 0.6337 (±0.0265/√100) 🟢 tokyotech-llm/Swallow-7b-hf 106.5 (±18.7) 0.746 0.866 0.289
77 0.6335 (±0.0252/√100) 🟢 karakuri-ai/karakuri-lm-8x7b-chat-v0.1 103.2 (±16.6) 0.766 0.872 0.263
78 0.6318 (±0.0264/√100) 🟢 tokyotech-llm/Llama-3-Swallow-70B-Ins... 119.2 (±74.3) 0.724 0.861 0.311
79 0.6310 (±0.0127/√100) 💬 Qwen/Qwen2.5-32B-Instruct 75.4 (±19.3) 0.634 0.898 0.360
80 0.6303 (±0.0252/√100) 🟢 cyberagent/calm2-7b-chat-dpo-experime... 110.0 (±24.3) 0.735 0.863 0.293
81 0.6297 (±0.0150/√100) 💬 Qwen/Qwen2.5-32B-Instruct 71.1 (±18.7) 0.634 0.906 0.349
82 0.6291 (±0.0207/√100) 💬 Qwen/QwQ-32B-Preview 229.6 (±135.9) 0.719 0.867 0.301
83 0.6285 (±0.0239/√100) 🟢 pfnet/nekomata-14b-pfn-qfin-inst-merge 124.7 (±47.2) 0.725 0.866 0.295
84 0.6279 (±0.0252/√100) 🟢 tokyotech-llm/Swallow-7b-NVE-hf 108.1 (±24.5) 0.747 0.870 0.267
85 0.6274 (±0.0772/√100) 🟢 rinna/nekomata-14b-instruction 98.3 (±24.2) 0.732 0.855 0.295
86 0.6267 (±0.0263/√100) 🟢 sbintuitions/sarashina1-7b 106.7 (±25.1) 0.737 0.866 0.276
87 0.6252 (±0.0246/√100) 🟢 karakuri-ai/karakuri-lm-70b-v0.1 106.0 (±27.0) 0.713 0.852 0.310
88 0.6214 (±0.0063/√10) 💬 google/gemini-1.0-pro-001 47.4 (±15.2) 0.635 0.976 0.254
89 0.6202 (±0.0251/√100) 🟢 stabilityai/japanese-stablelm-base-be... 107.3 (±19.2) 0.733 0.848 0.280
90 0.6197 (±0.0258/√100) 🟢 stockmark/stockmark-13b 108.9 (±49.3) 0.727 0.860 0.272
91 0.6191 (±0.0284/√100) 🟢 stockmark/stockmark-13b-instruct 108.0 (±46.8) 0.720 0.859 0.278
92 0.6178 (±0.0230/√100) 🟢 karakuri-ai/karakuri-lm-70b-chat-v0.1 104.7 (±27.5) 0.706 0.842 0.306
93 0.6176 (±0.0249/√100) 🟢 tokyotech-llm/Swallow-7b-instruct-hf 106.3 (±17.8) 0.716 0.851 0.285
94 0.6149 (±0.0153/√100) 💬 Qwen/Qwen2.5-14B-Instruct 76.5 (±18.4) 0.644 0.893 0.308
95 0.6136 (±0.0143/√10) 💬 openai/gpt-35-turbo 64.0 (±22.2) 0.658 0.944 0.239
96 0.6095 (±0.0225/√100) 💬 rinna/llama-3-youko-70b-instruct 135.3 (±46.8) 0.683 0.817 0.328
97 0.6091 (±0.0277/√100) 🟢 pfnet/nekomata-14b-pfn-qfin 85.1 (±28.4) 0.672 0.893 0.262
98 0.6087 (±0.1545/√100) 💬 tokyotech-llm/Swallow-70b-NVE-instruc... 135.7 (±74.0) 0.678 0.804 0.344
99 0.6063 (±0.0213/√100) 💬 Qwen/Qwen2.5-14B-Instruct 80.0 (±21.8) 0.639 0.889 0.290
100 0.6060 (±0.0238/√100) 🟢 Qwen/Qwen2-72B 105.5 (±23.5) 0.703 0.836 0.279
101 0.6037 (±0.0239/√100) 🟢 tokyotech-llm/Swallow-7b-NVE-instruct-hf 105.7 (±16.4) 0.719 0.847 0.245
102 0.6030 (±0.0287/√100) 💬 karakuri-ai/karakuri-lm-8x7b-instruct... 197.4 (±72.1) 0.703 0.832 0.274
103 0.6029 (±0.0223/√100) 🟢 Qwen/Qwen2-72B-Instruct 106.0 (±26.7) 0.684 0.825 0.299
104 0.5987 (±0.0264/√100) 🟢 cyberagent/calm2-7b-chat 107.5 (±20.8) 0.701 0.843 0.253
105 0.5971 (±0.0235/√100) 🟢 stockmark/stockmark-100b 107.2 (±24.7) 0.709 0.842 0.240
106 0.5945 (±0.1370/√100) 💬 tokyotech-llm/Swallow-13b-instruct-hf 167.3 (±116.4) 0.670 0.790 0.323
107 0.5921 (±0.0211/√100) 🟢 elyza/Llama-3-ELYZA-JP-8B 115.6 (±44.8) 0.685 0.831 0.260
108 0.5832 (±0.0220/√100) 🟢 augmxnt/shisa-gamma-7b-v1 106.7 (±21.8) 0.706 0.831 0.213
109 0.5825 (±0.0249/√100) 🟢 tokyotech-llm/Swallow-MS-7b-v0.1 106.4 (±25.9) 0.702 0.828 0.218
110 0.5811 (±0.0218/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-ac_00... 103.6 (±15.6) 0.675 0.816 0.252
111 0.5808 (±0.0220/√100) 🟢 stabilityai/japanese-stablelm-base-ga... 106.9 (±17.2) 0.690 0.822 0.230
112 0.5783 (±0.0217/√100) 🟢 microsoft/Phi-3-medium-4k-instruct 105.9 (±20.0) 0.675 0.826 0.234
113 0.5777 (±0.0228/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-dolly... 105.2 (±14.5) 0.675 0.811 0.247
114 0.5754 (±0.0182/√100) 🟢 Xwin-LM/Xwin-LM-70B-V0.1 105.4 (±26.8) 0.681 0.833 0.213
115 0.5737 (±0.0209/√100) 🟢 microsoft/Phi-3-medium-128k-instruct 107.7 (±24.7) 0.674 0.825 0.223
116 0.5735 (±0.0216/√100) 🟢 google/gemma-2-9b-it 95.9 (±22.0) 0.674 0.837 0.209
117 0.5734 (±0.1980/√100) 💬 tokyotech-llm/Swallow-70b-instruct-hf 130.9 (±105.0) 0.636 0.758 0.326
118 0.5724 (±0.0209/√100) 🟢 rinna/llama-3-youko-70b 104.6 (±20.6) 0.681 0.826 0.210
119 0.5716 (±0.0230/√100) 🟢 sbintuitions/sarashina2.1-1b 116.9 (±41.3) 0.668 0.821 0.226
120 0.5712 (±0.0194/√100) 💬 karakuri-ai/karakuri-lm-8x7b-chat-v0.1 244.4 (±49.3) 0.678 0.816 0.220
121 0.5710 (±0.0226/√100) 🟢 rinna/llama-3-youko-8b-instruct 111.6 (±23.4) 0.672 0.809 0.232
122 0.5659 (±0.0234/√100) 🟢 meta-llama/Meta-Llama-3.1-70B 103.7 (±20.1) 0.665 0.822 0.211
123 0.5656 (±0.0226/√100) 💬 meta-llama/Meta-Llama-3-70B-Instruct 110.2 (±36.4) 0.665 0.777 0.254
124 0.5646 (±0.0240/√100) 💬 microsoft/Phi-3-medium-4k-instruct 131.3 (±50.6) 0.633 0.807 0.253
125 0.5642 (±0.0261/√100) 🟢 stabilityai/japanese-stablelm-instruc... 105.1 (±19.5) 0.646 0.799 0.247
126 0.5620 (±0.0254/√100) 🟢 meta-llama/Meta-Llama-3-70B 102.0 (±17.2) 0.664 0.809 0.213
127 0.5588 (±0.0230/√100) 🟢 stabilityai/japanese-stablelm-instruc... 105.6 (±17.0) 0.673 0.812 0.191
128 0.5574 (±0.0216/√100) 🟢 rinna/nekomata-7b 108.4 (±18.0) 0.678 0.816 0.178
129 0.5569 (±0.0244/√100) 🟢 rinna/llama-3-youko-8b 104.9 (±17.0) 0.670 0.813 0.188
130 0.5568 (±0.0200/√100) 🟢 meta-llama/Meta-Llama-3-70B-Instruct 111.8 (±55.9) 0.655 0.780 0.236
131 0.5562 (±0.0952/√100) 💬 stockmark/stockmark-13b-instruct 137.2 (±89.6) 0.633 0.798 0.238
132 0.5537 (±0.0204/√100) 🟢 tokyotech-llm/Llama-3-Swallow-8B-Inst... 114.4 (±48.5) 0.657 0.812 0.192
133 0.5516 (±0.1016/√100) 💬 cyberagent/calm2-7b-chat-dpo-experime... 181.1 (±120.1) 0.644 0.775 0.236
134 0.5511 (±0.0203/√100) 🟢 google/gemma-2-27b-it 110.3 (±56.8) 0.599 0.836 0.218
135 0.5500 (±0.0605/√100) 💬 tokyotech-llm/Llama-3-Swallow-70B-Ins... 156.5 (±106.5) 0.633 0.780 0.237
136 0.5500 (±0.0467/√100) 💬 tokyotech-llm/Swallow-7b-instruct-hf 121.9 (±77.3) 0.612 0.812 0.225
137 0.5437 (±0.0218/√100) 💬 Xwin-LM/Xwin-LM-70B-V0.1 200.7 (±63.1) 0.652 0.782 0.198
138 0.5436 (±0.0246/√100) 🟢 llm-jp/llm-jp-3-3.7b 101.3 (±10.4) 0.646 0.795 0.189
139 0.5432 (±0.0208/√100) 💬 CohereForAI/c4ai-command-r-plus 48.9 (±16.5) 0.505 0.931 0.194
140 0.5429 (±0.0238/√100) 🟢 meta-llama/Meta-Llama-3.1-70B-Instruct 157.6 (±221.7) 0.636 0.770 0.222
141 0.5387 (±0.0269/√100) 💬 rinna/llama-3-youko-8b-instruct 265.4 (±104.1) 0.635 0.771 0.210
142 0.5386 (±0.0215/√100) 💬 microsoft/Phi-3-medium-128k-instruct 91.9 (±44.7) 0.589 0.834 0.193
143 0.5377 (±0.0481/√100) 💬 meta-llama/Meta-Llama-3.1-70B-Instruct 135.8 (±194.8) 0.617 0.779 0.218
144 0.5349 (±0.0203/√100) 💬 google/gemma-2-27b-it 74.7 (±42.7) 0.545 0.874 0.186
145 0.5347 (±0.0188/√100) 🟢 rinna/youri-7b 107.6 (±16.3) 0.654 0.802 0.148
146 0.5316 (±0.0273/√100) 💬 lightblue/karasu-7B-chat 111.8 (±46.5) 0.621 0.800 0.174
147 0.5301 (±0.0476/√100) 💬 lightblue/karasu-7B-chat-plus 107.1 (±46.7) 0.615 0.798 0.178
148 0.5283 (±0.0585/√100) 💬 lightblue/karasu-7B-chat-plus-unleashed 104.6 (±45.3) 0.614 0.794 0.177
149 0.5179 (±0.0264/√100) 🟢 cyberagent/calm2-7b 106.0 (±26.2) 0.601 0.770 0.182
150 0.5164 (±0.0209/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-jaste... 109.3 (±33.5) 0.606 0.788 0.155
151 0.5143 (±0.0212/√100) 🟢 llm-jp/llm-jp-13b-v2.0 104.1 (±11.2) 0.604 0.760 0.180
152 0.5143 (±0.0170/√100) 🟢 moneyforward/houou-instruction-7b-v3 112.2 (±37.8) 0.629 0.778 0.135
153 0.5122 (±0.0132/√100) 💬 Qwen/Qwen2.5-7B-Instruct 69.5 (±28.7) 0.557 0.847 0.132
154 0.5085 (±0.0160/√100) 🟢 moneyforward/houou-instruction-7b-v1 105.9 (±41.0) 0.617 0.781 0.128
155 0.5080 (±0.0306/√100) 💬 stabilityai/japanese-stablelm-instruc... 111.3 (±58.3) 0.548 0.782 0.195
156 0.5073 (±0.0208/√100) 💬 Qwen/Qwen2-57B-A14B-Instruct 154.8 (±89.5) 0.615 0.734 0.173
157 0.5045 (±0.0208/√100) 🟢 Qwen/Qwen2-57B-A14B 106.7 (±22.5) 0.617 0.757 0.139
158 0.5041 (±0.0225/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-dolly... 106.2 (±29.3) 0.579 0.778 0.155
159 0.5022 (±0.0221/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-jaste... 95.0 (±36.2) 0.579 0.795 0.132
160 0.5013 (±0.0196/√100) 🟢 google/gemma-2-9b 107.3 (±26.0) 0.595 0.761 0.148
161 0.5013 (±0.0375/√100) 💬 karakuri-ai/karakuri-lm-70b-chat-v0.1 427.4 (±151.5) 0.579 0.723 0.202
162 0.5002 (±0.0218/√100) 🟢 Qwen/Qwen-72B-Chat 223.0 (±258.3) 0.614 0.716 0.171
163 0.4995 (±0.0211/√100) 💬 Qwen/Qwen1.5-72B-Chat 119.3 (±58.1) 0.582 0.708 0.208
164 0.4970 (±0.0117/√100) 💬 Qwen/Qwen2.5-7B-Instruct 65.0 (±22.0) 0.535 0.858 0.098
165 0.4963 (±0.0189/√100) 🟢 Qwen/Qwen1.5-72B-Chat 128.1 (±77.7) 0.586 0.698 0.206
166 0.4959 (±0.0235/√100) 🟢 llm-jp/llm-jp-13b-v1.0 115.0 (±40.9) 0.576 0.756 0.156
167 0.4953 (±0.0203/√100) 🟢 meta-llama/Llama-2-70b-hf 110.4 (±25.8) 0.596 0.745 0.145
168 0.4949 (±0.0177/√100) 💬 moneyforward/houou-instruction-7b-v1 180.5 (±66.6) 0.604 0.734 0.146
169 0.4931 (±0.0247/√100) 🟢 Rakuten/RakutenAI-7B-instruct 105.6 (±33.1) 0.598 0.750 0.132
170 0.4921 (±0.0219/√100) 🟢 Rakuten/RakutenAI-7B-chat 114.9 (±44.7) 0.592 0.760 0.124
171 0.4916 (±0.0201/√100) 🟢 moneyforward/houou-instruction-7b-v2 104.7 (±41.2) 0.588 0.770 0.116
172 0.4895 (±0.0440/√100) 💬 llm-jp/llm-jp-13b-instruct-full-dolly... 268.1 (±133.1) 0.548 0.722 0.199
173 0.4872 (±0.0237/√100) 🟢 lightblue/karasu-7B 110.1 (±19.0) 0.586 0.739 0.137
174 0.4870 (±0.0215/√100) 🟢 Qwen/Qwen-72B 134.6 (±114.6) 0.593 0.715 0.152
175 0.4868 (±0.0163/√100) 💬 google/gemma-2-9b-it 47.6 (±14.6) 0.477 0.880 0.104
176 0.4863 (±0.1167/√100) 💬 pfnet/nekomata-14b-pfn-qfin-inst-merge 93.4 (±55.0) 0.544 0.721 0.194
177 0.4862 (±0.0221/√100) 🟢 Qwen/Qwen2-57B-A14B-Instruct 116.9 (±82.5) 0.601 0.734 0.124
178 0.4857 (±0.0168/√100) 💬 moneyforward/houou-instruction-7b-v2 207.0 (±57.3) 0.591 0.719 0.147
179 0.4829 (±0.0211/√100) 🟢 Qwen/Qwen1.5-72B 136.2 (±85.6) 0.591 0.705 0.153
180 0.4827 (±0.0464/√100) 💬 llm-jp/llm-jp-13b-instruct-full-ac_00... 269.1 (±131.5) 0.542 0.716 0.191
181 0.4762 (±0.0810/√100) 💬 stabilityai/japanese-stablelm-instruc... 126.2 (±67.4) 0.545 0.726 0.158
182 0.4746 (±0.0210/√100) 🟢 rinna/youri-7b-chat 102.1 (±16.4) 0.571 0.752 0.100
183 0.4744 (±0.0227/√100) 🟢 pfnet/plamo-13b 108.2 (±28.5) 0.558 0.749 0.116
184 0.4743 (±0.0987/√100) 💬 tokyotech-llm/Swallow-7b-NVE-instruct-hf 129.0 (±72.8) 0.535 0.725 0.163
185 0.4730 (±0.0166/√100) 🟢 Xwin-LM/Xwin-LM-13B-V0.2 109.7 (±27.4) 0.582 0.723 0.114
186 0.4723 (±0.0204/√100) 💬 Rakuten/RakutenAI-7B-chat 233.0 (±133.0) 0.565 0.734 0.118
187 0.4723 (±0.0808/√100) 💬 tokyotech-llm/Llama-3-Swallow-8B-Inst... 199.3 (±155.6) 0.563 0.699 0.154
188 0.4698 (±0.0200/√100) 🟢 Rakuten/RakutenAI-7B 105.4 (±25.6) 0.576 0.721 0.113
189 0.4692 (±0.0161/√100) 🟢 shisa-ai/shisa-v1-qwen2-7b 109.0 (±23.9) 0.563 0.712 0.133
190 0.4661 (±0.0210/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-dolly... 111.6 (±44.2) 0.536 0.756 0.106
191 0.4659 (±0.0438/√100) 💬 deepseek-ai/deepseek-llm-67b-chat 146.0 (±62.1) 0.555 0.703 0.139
192 0.4659 (±0.0202/√100) 🟢 llm-jp/llm-jp-3-1.8b 105.0 (±16.9) 0.568 0.725 0.105
193 0.4648 (±0.1659/√100) 💬 cyberagent/calm2-7b-chat 124.7 (±95.9) 0.536 0.688 0.171
194 0.4622 (±0.0195/√100) 🟢 Qwen/Qwen-14B-Chat 135.5 (±84.3) 0.572 0.718 0.097
195 0.4619 (±0.0162/√100) 💬 lmsys/vicuna-13b-v1.5-16k 126.5 (±48.4) 0.574 0.715 0.097
196 0.4609 (±0.0113/√10) 🟢 google/gemma-2-2b-jpn-it 69.4 (±24.1) 0.509 0.805 0.069
197 0.4607 (±0.0165/√100) 🟢 SakanaAI/EvoLLM-JP-v1-7B 111.2 (±30.4) 0.579 0.708 0.095
198 0.4601 (±0.0184/√100) 🟢 shisa-ai/shisa-v1-llama3-8b 112.9 (±31.4) 0.557 0.703 0.120
199 0.4597 (±0.0268/√100) 🟢 CohereForAI/c4ai-command-r-v01 179.2 (±166.3) 0.590 0.592 0.197
200 0.4586 (±0.0141/√100) 🟢 google/gemma-2-2b-it 88.2 (±30.8) 0.536 0.761 0.079
201 0.4561 (±0.0202/√100) 🟢 pfnet/plamo-13b-instruct 144.0 (±147.7) 0.532 0.763 0.073
202 0.4559 (±0.0201/√100) 🟢 pfnet/plamo-13b-instruct-nc 156.0 (±183.1) 0.523 0.768 0.077
203 0.4558 (±0.0156/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 75.3 (±26.6) 0.488 0.804 0.076
204 0.4543 (±0.0217/√100) 🟢 rinna/youri-7b-instruction 96.2 (±29.5) 0.530 0.743 0.090
205 0.4535 (±0.0348/√100) 💬 Rakuten/RakutenAI-7B-instruct 128.6 (±83.2) 0.527 0.726 0.108
206 0.4535 (±0.0183/√100) 🟢 THUDM/glm-4-9b 110.3 (±36.9) 0.554 0.689 0.118
207 0.4527 (±0.0146/√100) 🟢 lmsys/vicuna-13b-v1.5-16k 107.9 (±25.9) 0.576 0.708 0.075
208 0.4504 (±0.0224/√100) 🟢 rinna/nekomata-7b-instruction 96.4 (±23.7) 0.528 0.734 0.089
209 0.4486 (±0.0161/√100) 💬 Qwen/Qwen2-7B-Instruct 163.6 (±61.4) 0.547 0.688 0.111
210 0.4484 (±0.0191/√100) 💬 SakanaAI/EvoLLM-JP-v1-7B 123.9 (±68.1) 0.545 0.706 0.094
211 0.4477 (±0.0205/√100) 🟢 rinna/llama-3-youko-70b-instruct 130.7 (±95.3) 0.527 0.670 0.146
212 0.4426 (±0.0204/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b-inst... 111.1 (±28.2) 0.544 0.687 0.097
213 0.4409 (±0.1064/√100) 💬 lightblue/karasu-7B 138.1 (±92.9) 0.512 0.679 0.131
214 0.4404 (±0.0146/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 75.9 (±22.7) 0.493 0.773 0.056
215 0.4387 (±0.0655/√100) 💬 Qwen/Qwen-72B-Chat 117.7 (±137.1) 0.541 0.632 0.143
216 0.4385 (±0.0285/√100) 💬 rinna/youri-7b-chat 95.4 (±41.1) 0.500 0.733 0.083
217 0.4377 (±0.0107/√100) 🟢 google/gemma-1.1-7b-it 86.8 (±21.4) 0.509 0.732 0.072
218 0.4374 (±0.0217/√100) 🟢 Qwen/Qwen1.5-32B-Chat 127.0 (±57.0) 0.538 0.642 0.133
219 0.4336 (±0.0168/√100) 🟢 stabilityai/japanese-stablelm-base-be... 107.1 (±17.2) 0.539 0.689 0.073
220 0.4335 (±0.0221/√100) 🟢 Qwen/Qwen-14B 118.1 (±71.6) 0.530 0.675 0.096
221 0.4332 (±0.0164/√100) 🟢 Qwen/Qwen2-7B-Instruct 119.1 (±45.7) 0.531 0.670 0.098
222 0.4330 (±0.0149/√100) 💬 google/gemma-2-2b-it 56.0 (±27.8) 0.445 0.788 0.066
223 0.4320 (±0.0171/√100) 🟢 Qwen/Qwen2-7B 109.1 (±40.1) 0.532 0.671 0.093
224 0.4296 (±0.0322/√100) 💬 Qwen/Qwen-14B-Chat 159.0 (±69.7) 0.522 0.675 0.092
225 0.4295 (±0.0157/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b-instruct 111.5 (±31.4) 0.530 0.676 0.083
226 0.4292 (±0.0181/√100) 💬 Xwin-LM/Xwin-LM-13B-V0.2 240.7 (±48.4) 0.533 0.670 0.085
227 0.4282 (±0.0193/√100) 🟢 stabilityai/japanese-stablelm-3b-4e1t... 110.8 (±26.0) 0.518 0.688 0.078
228 0.4272 (±0.0273/√100) 🟢 mistralai/Mistral-Nemo-Instruct-2407 155.8 (±132.8) 0.548 0.611 0.122
229 0.4265 (±0.0115/√100) 💬 google/gemma-1.1-7b-it 78.7 (±28.4) 0.475 0.739 0.066
230 0.4256 (±0.0270/√100) 🟢 rinna/japanese-gpt-neox-3.6b 129.8 (±73.4) 0.485 0.685 0.106
231 0.4228 (±0.0185/√100) 🟢 stabilityai/japanese-stablelm-base-ja... 110.4 (±28.6) 0.528 0.668 0.073
232 0.4222 (±0.0138/√100) 🟢 Xwin-LM/Xwin-LM-7B-V0.2 110.6 (±29.3) 0.520 0.677 0.070
233 0.4220 (±0.0185/√100) 🟢 lmsys/vicuna-7b-v1.5-16k 111.8 (±31.8) 0.522 0.670 0.074
234 0.4207 (±0.0189/√100) 🟢 stabilityai/japanese-stablelm-3b-4e1t... 112.8 (±27.0) 0.507 0.683 0.072
235 0.4201 (±0.0177/√100) 💬 lmsys/vicuna-7b-v1.5-16k 128.1 (±52.5) 0.514 0.668 0.078
236 0.4164 (±0.0244/√100) 🟢 google/gemma-7b 135.5 (±132.3) 0.533 0.631 0.085
237 0.4150 (±0.0212/√100) 💬 Qwen/Qwen1.5-32B-Chat 125.7 (±250.5) 0.496 0.620 0.130
238 0.4149 (±0.0375/√100) 💬 llm-jp/llm-jp-13b-instruct-full-dolly... 186.6 (±108.4) 0.469 0.685 0.090
239 0.4144 (±0.0149/√100) 💬 01-ai/Yi-1.5-34B-Chat 170.6 (±47.1) 0.514 0.628 0.101
240 0.4140 (±0.0208/√100) 🟢 meta-llama/Meta-Llama-3-8B-Instruct 116.8 (±44.3) 0.523 0.637 0.082
241 0.4125 (±0.0303/√100) 💬 CohereForAI/c4ai-command-r-v01 137.7 (±324.6) 0.519 0.562 0.157
242 0.4122 (±0.0199/√100) 🟢 rinna/bilingual-gpt-neox-4b 121.0 (±43.6) 0.485 0.660 0.092
243 0.4097 (±0.0187/√100) 🟢 meta-llama/Meta-Llama-3.1-8B 108.7 (±35.4) 0.512 0.650 0.068
244 0.4087 (±0.0201/√100) 🟢 meta-llama/Llama-2-70b-chat-hf 161.3 (±140.8) 0.519 0.608 0.099
245 0.4087 (±0.0146/√100) 🟢 microsoft/Phi-3-small-8k-instruct 109.1 (±24.1) 0.514 0.644 0.068
246 0.4076 (±0.0142/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b-fast-... 109.0 (±32.9) 0.503 0.644 0.076
247 0.4074 (±0.0207/√100) 💬 elyza/ELYZA-japanese-Llama-2-13b-inst... 156.6 (±65.9) 0.490 0.646 0.086
248 0.4073 (±0.0175/√100) 🟢 stabilityai/japanese-stablelm-instruc... 110.0 (±26.5) 0.490 0.663 0.070
249 0.4058 (±0.0295/√100) 💬 rinna/youri-7b-instruction 97.0 (±57.0) 0.439 0.713 0.065
250 0.4050 (±0.0191/√100) 🟢 mistralai/Mixtral-8x22B-v0.1 115.6 (±55.4) 0.517 0.615 0.084
251 0.4048 (±0.0175/√100) 🟢 meta-llama/Meta-Llama-3-8B 109.0 (±19.8) 0.505 0.641 0.068
252 0.4045 (±0.0186/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 133.1 (±57.4) 0.475 0.678 0.061
253 0.4042 (±0.0131/√100) 🟢 microsoft/Orca-2-13b 115.5 (±42.6) 0.510 0.630 0.073
254 0.4041 (±0.0218/√100) 💬 meta-llama/Meta-Llama-3-8B-Instruct 131.4 (±88.3) 0.508 0.614 0.090
255 0.4035 (±0.0151/√100) 🟢 SakanaAI/EvoLLM-JP-A-v1-7B 110.4 (±31.3) 0.508 0.633 0.069
256 0.4033 (±0.0164/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b-fast... 107.2 (±28.5) 0.495 0.643 0.072
257 0.4032 (±0.0237/√100) 🟢 Qwen/Qwen1.5-32B 150.3 (±104.8) 0.505 0.605 0.100
258 0.4024 (±0.0187/√100) 🟢 01-ai/Yi-1.5-34B 109.9 (±28.2) 0.493 0.631 0.083
259 0.4011 (±0.0236/√100) 🟢 cyberagent/open-calm-7b 143.8 (±97.0) 0.472 0.641 0.091
260 0.4006 (±0.0166/√100) 💬 microsoft/Phi-3-small-8k-instruct 189.7 (±84.1) 0.500 0.630 0.073
261 0.4001 (±0.0199/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 117.6 (±48.9) 0.464 0.684 0.052
262 0.3985 (±0.0161/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b 138.4 (±51.8) 0.493 0.634 0.069
263 0.3960 (±0.0199/√100) 🟢 line-corporation/japanese-large-lm-1.7b 179.2 (±174.5) 0.474 0.650 0.065
264 0.3949 (±0.0193/√100) 💬 meta-llama/Meta-Llama-3.1-8B-Instruct 216.6 (±345.2) 0.487 0.624 0.074
265 0.3948 (±0.0190/√100) 💬 Qwen/Qwen1.5-14B-Chat 127.9 (±50.6) 0.500 0.604 0.080
266 0.3946 (±0.0201/√100) 🟢 Qwen/Qwen1.5-14B 130.9 (±67.8) 0.509 0.609 0.066
267 0.3934 (±0.0201/√100) 🟢 stabilityai/japanese-stablelm-instruc... 107.8 (±38.0) 0.466 0.648 0.066
268 0.3914 (±0.0172/√100) 🟢 mistralai/Mixtral-8x7B-Instruct-v0.1 95.1 (±25.2) 0.488 0.636 0.050
269 0.3863 (±0.0160/√100) 🟢 Qwen/Qwen1.5-14B-Chat 131.4 (±55.8) 0.491 0.593 0.075
270 0.3837 (±0.0188/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 117.4 (±42.4) 0.462 0.649 0.041
271 0.3823 (±0.0645/√100) 💬 mistralai/Mistral-Nemo-Instruct-2407 157.9 (±140.3) 0.484 0.563 0.100
272 0.3822 (±0.0647/√100) 💬 llm-jp/llm-jp-13b-instruct-full-dolly... 97.6 (±76.2) 0.397 0.664 0.086
273 0.3819 (±0.0265/√100) 🟢 google/gemma-2-27b 214.2 (±183.3) 0.450 0.608 0.087
274 0.3804 (±0.0161/√100) 🟢 Qwen/Qwen-7B-Chat 140.8 (±65.1) 0.485 0.612 0.045
275 0.3803 (±0.0249/√100) 💬 elyza/ELYZA-japanese-Llama-2-7b-instruct 136.4 (±70.7) 0.452 0.619 0.070
276 0.3772 (±0.0162/√100) 💬 microsoft/Phi-3-small-128k-instruct 199.7 (±111.9) 0.473 0.590 0.069
277 0.3760 (±0.0236/√100) 🟢 cyberagent/open-calm-3b 123.2 (±79.0) 0.442 0.624 0.062
278 0.3759 (±0.0149/√100) 🟢 lmsys/longchat-7b-v1.5-32k 116.9 (±31.6) 0.474 0.609 0.045
279 0.3740 (±0.0164/√100) 🟢 meta-llama/Llama-2-13b-hf 108.5 (±21.8) 0.474 0.603 0.045
280 0.3737 (±0.0197/√100) 🟢 meta-llama/Meta-Llama-3.1-8B-Instruct 204.5 (±303.4) 0.478 0.589 0.055
281 0.3720 (±0.0622/√100) 💬 Xwin-LM/Xwin-LM-7B-V0.2 205.3 (±79.1) 0.466 0.590 0.060
282 0.3720 (±0.0157/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b-fast 177.5 (±147.2) 0.458 0.598 0.061
283 0.3699 (±0.0345/√100) 💬 Qwen/Qwen-7B-Chat 182.9 (±110.3) 0.468 0.600 0.042
284 0.3694 (±0.0103/√100) 🟢 google/gemma-7b-it 89.7 (±21.6) 0.446 0.640 0.022
285 0.3685 (±0.0173/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b 140.0 (±52.8) 0.462 0.596 0.047
286 0.3673 (±0.0089/√100) 💬 google/gemma-7b-it 110.0 (±47.6) 0.448 0.633 0.020
287 0.3655 (±0.0116/√100) 🟢 deepseek-ai/deepseek-llm-7b-chat 113.9 (±24.7) 0.474 0.579 0.043
288 0.3642 (±0.0165/√100) 🟢 llm-jp/llm-jp-1.3b-v1.0 134.0 (±62.6) 0.437 0.612 0.044
289 0.3637 (±0.0223/√100) 🟢 cyberagent/open-calm-large 122.3 (±73.9) 0.424 0.611 0.056
290 0.3637 (±0.0152/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b-fast 168.0 (±77.4) 0.452 0.587 0.052
291 0.3632 (±0.0237/√100) 💬 elyza/ELYZA-japanese-Llama-2-7b-fast-... 178.6 (±113.6) 0.443 0.582 0.064
292 0.3628 (±0.0145/√100) 🟢 Qwen/Qwen-7B 117.3 (±39.0) 0.468 0.582 0.039
293 0.3554 (±0.0178/√100) 🟢 meta-llama/Llama-2-7b-chat-hf 139.3 (±93.1) 0.464 0.570 0.031
294 0.3545 (±0.0445/√100) 💬 llm-jp/llm-jp-13b-instruct-full-jaste... 48.8 (±50.1) 0.283 0.723 0.058
295 0.3543 (±0.0439/√100) 💬 lmsys/longchat-7b-v1.5-32k 160.1 (±73.5) 0.448 0.572 0.043
296 0.3538 (±0.0175/√100) 🟢 01-ai/Yi-1.5-9B 113.0 (±29.4) 0.457 0.555 0.050
297 0.3531 (±0.0159/√100) 🟢 mistralai/Mixtral-8x7B-v0.1 94.3 (±20.8) 0.450 0.573 0.037
298 0.3514 (±0.0102/√100) 🟢 google/gemma-1.1-2b-it 80.4 (±21.6) 0.404 0.625 0.025
299 0.3495 (±0.0268/√100) 🟢 cyberagent/open-calm-1b 141.3 (±110.0) 0.412 0.578 0.059
300 0.3471 (±0.0131/√100) 🟢 microsoft/Orca-2-7b 131.1 (±70.7) 0.447 0.555 0.039
301 0.3465 (±0.0202/√100) 💬 deepseek-ai/deepseek-llm-7b-chat 167.2 (±76.5) 0.435 0.562 0.042
302 0.3463 (±0.0178/√100) 💬 mistralai/Mixtral-8x7B-Instruct-v0.1 147.1 (±111.8) 0.448 0.548 0.043
303 0.3449 (±0.0986/√100) 💬 stabilityai/japanese-stablelm-instruc... 109.4 (±66.2) 0.397 0.585 0.053
304 0.3440 (±0.0978/√100) 💬 stabilityai/japanese-stablelm-3b-4e1t... 127.8 (±80.5) 0.401 0.576 0.055
305 0.3436 (±0.0126/√100) 💬 01-ai/Yi-1.5-9B-Chat 143.6 (±60.1) 0.438 0.540 0.053
306 0.3428 (±0.0163/√100) 🟢 meta-llama/Llama-2-7b-hf 112.3 (±28.0) 0.440 0.550 0.038
307 0.3408 (±0.0225/√100) 🟢 anthracite-org/magnum-32b-v2 191.9 (±223.2) 0.442 0.507 0.073
308 0.3393 (±0.0225/√100) 🟢 stockmark/gpt-neox-japanese-1.4b 92.2 (±63.7) 0.351 0.641 0.025
309 0.3322 (±0.0151/√100) 🟢 Qwen/Qwen1.5-7B-Chat 127.7 (±117.0) 0.431 0.520 0.045
310 0.3315 (±0.0203/√100) 🟢 Qwen/Qwen1.5-7B 141.8 (±126.5) 0.445 0.504 0.046
311 0.3313 (±0.0115/√100) 🟢 google/gemma-2b-it 85.9 (±24.7) 0.393 0.577 0.024
312 0.3293 (±0.0252/√100) 💬 Qwen/Qwen1.5-7B-Chat 195.7 (±113.1) 0.429 0.503 0.056
313 0.3276 (±0.0709/√100) 💬 elyza/ELYZA-japanese-Llama-2-13b-fast... 134.0 (±98.8) 0.395 0.543 0.045
314 0.3272 (±0.0101/√100) 💬 01-ai/Yi-1.5-6B-Chat 194.4 (±75.0) 0.426 0.530 0.025
315 0.3187 (±0.0142/√100) 🟢 Qwen/Qwen2-1.5B-Instruct 131.4 (±46.7) 0.421 0.513 0.022
316 0.3172 (±0.0150/√100) 🟢 Qwen/Qwen2-1.5B 120.9 (±30.7) 0.422 0.511 0.019
317 0.3161 (±0.0119/√100) 🟢 deepseek-ai/deepseek-llm-7b-base 113.7 (±21.6) 0.424 0.501 0.024
318 0.3147 (±0.0175/√100) 💬 Qwen/Qwen2-1.5B-Instruct 180.7 (±101.0) 0.408 0.511 0.025
319 0.3078 (±0.0195/√100) 🟢 cyberagent/open-calm-medium 117.3 (±59.4) 0.363 0.537 0.024
320 0.3058 (±0.1106/√100) 💬 rinna/nekomata-7b-instruction 61.2 (±57.0) 0.307 0.567 0.043
321 0.3053 (±0.0177/√100) 🟢 google/gemma-2b 151.5 (±113.6) 0.410 0.480 0.026
322 0.3050 (±0.0190/√100) 🟢 Qwen/Qwen1.5-MoE-A2.7B 146.4 (±90.3) 0.412 0.468 0.035
323 0.2993 (±0.0095/√100) 🟢 01-ai/Yi-1.5-6B-Chat 133.3 (±46.2) 0.394 0.481 0.022
324 0.2993 (±0.0107/√100) 🟢 tiiuae/falcon-11B 121.6 (±31.5) 0.398 0.483 0.016
325 0.2957 (±0.0641/√100) 💬 meta-llama/Llama-2-13b-chat-hf 305.2 (±299.7) 0.402 0.453 0.032
326 0.2953 (±0.0442/√100) 🟢 augmxnt/shisa-base-7b-v1 200.4 (±160.3) 0.378 0.478 0.030
327 0.2924 (±0.0506/√100) 💬 Qwen/Qwen1.5-MoE-A2.7B-Chat 245.1 (±209.1) 0.381 0.453 0.043
328 0.2914 (±0.0133/√100) 🟢 mistralai/Mistral-7B-v0.1 117.4 (±40.4) 0.402 0.454 0.018
329 0.2907 (±0.0175/√100) 🟢 Qwen/Qwen1.5-MoE-A2.7B-Chat 149.8 (±91.0) 0.388 0.448 0.036
330 0.2853 (±0.0163/√100) 🟢 Qwen/Qwen1.5-4B-Chat 127.8 (±71.2) 0.395 0.441 0.019
331 0.2809 (±0.0133/√100) 🟢 Qwen/Qwen1.5-1.8B-Chat 178.3 (±92.0) 0.381 0.445 0.017
332 0.2770 (±0.0131/√100) 🟢 mistralai/Mistral-7B-Instruct-v0.2 146.2 (±70.1) 0.387 0.419 0.024
333 0.2769 (±0.0324/√100) 💬 llm-jp/llm-jp-13b-instruct-full-jaste... 16.9 (±24.6) 0.125 0.693 0.013
334 0.2769 (±0.1029/√100) 💬 stabilityai/japanese-stablelm-instruc... 117.0 (±115.0) 0.307 0.489 0.035
335 0.2666 (±0.0241/√100) 🟢 deepseek-ai/deepseek-llm-67b-chat 140.2 (±83.0) 0.351 0.440 0.009
336 0.2661 (±0.0128/√100) 🟢 Qwen/Qwen1.5-1.8B 129.7 (±65.7) 0.360 0.424 0.014
337 0.2613 (±0.0136/√100) 🟢 Qwen/Qwen2-0.5B-Instruct 176.8 (±98.9) 0.351 0.426 0.007
338 0.2604 (±0.0148/√100) 🟢 mistralai/Mistral-7B-Instruct-v0.1 139.8 (±101.3) 0.367 0.400 0.014
339 0.2598 (±0.0129/√100) 🟢 Qwen/Qwen2-0.5B 122.7 (±43.5) 0.350 0.420 0.009
340 0.2581 (±0.0196/√100) 🟢 cyberagent/open-calm-small 119.1 (±54.1) 0.310 0.460 0.004
341 0.2555 (±0.0163/√100) 🟢 Qwen/Qwen1.5-4B 149.2 (±76.6) 0.363 0.388 0.015
342 0.2543 (±0.0266/√100) 🟢 mosaicml/mpt-30b-chat 121.3 (±46.4) 0.327 0.428 0.008
343 0.2414 (±0.0281/√100) 💬 Qwen/Qwen1.5-1.8B-Chat 480.0 (±210.3) 0.329 0.392 0.003
344 0.2394 (±0.0745/√100) 💬 Qwen/Qwen1.5-4B-Chat 105.3 (±104.1) 0.307 0.390 0.021
345 0.2317 (±0.0455/√100) 💬 mistralai/Mistral-7B-Instruct-v0.1 202.3 (±153.9) 0.320 0.362 0.012
346 0.2231 (±0.0166/√100) 💬 mistralai/Mistral-7B-Instruct-v0.2 261.2 (±166.3) 0.316 0.334 0.019
347 0.2182 (±0.0152/√100) 🟢 microsoft/phi-1 47.6 (±34.3) 0.234 0.420 0.000
348 0.2177 (±0.0110/√100) 🟢 Qwen/Qwen1.5-0.5B-Chat 143.4 (±52.1) 0.317 0.327 0.009
349 0.2169 (±0.0561/√100) 💬 Qwen/Qwen2-0.5B-Instruct 129.5 (±114.3) 0.265 0.379 0.006
350 0.2169 (±0.0218/√100) 🟢 mosaicml/mpt-30b-instruct 109.8 (±36.1) 0.274 0.370 0.008
351 0.2146 (±0.0151/√100) 🟢 microsoft/phi-2 78.0 (±31.4) 0.287 0.356 0.001
352 0.2061 (±0.0820/√100) 💬 meta-llama/Llama-2-70b-chat-hf 523.3 (±444.5) 0.271 0.303 0.045
353 0.2040 (±0.0152/√100) 🟢 Qwen/Qwen1.5-0.5B 138.6 (±55.9) 0.296 0.314 0.003
354 0.2038 (±0.0538/√100) 🟢 mosaicml/mpt-30b 236.5 (±433.3) 0.271 0.334 0.007
355 0.1885 (±0.0194/√100) 🟢 microsoft/phi-1_5 77.5 (±33.6) 0.258 0.306 0.001
356 0.1833 (±0.0406/√100) 💬 google/gemma-1.1-2b-it 32.6 (±26.7) 0.171 0.376 0.003
357 0.1765 (±0.0439/√100) 💬 Qwen/Qwen1.5-0.5B-Chat 214.3 (±172.6) 0.251 0.276 0.002
358 0.1687 (±0.0172/√100) 🟢 upstage/SOLAR-10.7B-v1.0 171.0 (±87.1) 0.265 0.237 0.004
359 0.1544 (±0.0132/√100) 🟢 01-ai/Yi-1.5-34B-Chat 730.0 (±533.6) 0.201 0.256 0.006
360 0.1475 (±0.0826/√100) 💬 mosaicml/mpt-30b-chat 112.2 (±112.4) 0.182 0.254 0.007
361 0.1241 (±0.0558/√100) 💬 google/gemma-2b-it 24.1 (±24.6) 0.115 0.257 0.000
362 0.1226 (±0.0240/√100) 🟢 Deci/DeciLM-7B 174.0 (±165.5) 0.190 0.174 0.003
363 0.1160 (±0.0081/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 212.1 (±148.9) 0.153 0.195 0.000
364 0.1009 (±0.0846/√100) 💬 meta-llama/Llama-2-7b-chat-hf 241.5 (±336.2) 0.136 0.158 0.009
365 0.1004 (±0.0094/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 123.1 (±128.8) 0.119 0.182 0.000
366 0.0987 (±0.0145/√100) 🟢 deepseek-ai/deepseek-llm-67b-base 154.2 (±77.3) 0.174 0.121 0.000
367 0.0982 (±0.1596/√100) 💬 rinna/nekomata-14b-instruction 16.0 (±38.1) 0.115 0.141 0.039
368 0.0955 (±0.0102/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 129.5 (±141.0) 0.116 0.170 0.000
369 0.0939 (±0.0064/√100) 🟢 sbintuitions/tiny-lm-chat 250.2 (±275.6) 0.133 0.149 0.000
370 0.0936 (±0.0082/√100) 💬 sbintuitions/tiny-lm-chat 276.7 (±209.6) 0.135 0.145 0.000
371 0.0921 (±0.0058/√100) 🟢 sbintuitions/tiny-lm 471.9 (±199.0) 0.135 0.142 0.000
372 0.0880 (±0.0334/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 134.0 (±144.7) 0.105 0.159 0.000
373 0.0762 (±0.0033/√100) 🟢 line-corporation/japanese-large-lm-3.6b 1066.6 (±31.6) 0.125 0.103 0.000
374 0.0760 (±0.0032/√100) 🟢 line-corporation/japanese-large-lm-3.... 1066.4 (±31.8) 0.125 0.103 0.000
375 0.0758 (±0.0034/√100) 💬 line-corporation/japanese-large-lm-3.... 1067.2 (±31.8) 0.125 0.102 0.000
376 0.0673 (±0.0085/√100) 🟢 moneyforward/houou-instruction-7b-v3 143.2 (±112.2) 0.098 0.104 0.000
377 0.0625 (±0.0169/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-ac_00... 31.6 (±10.3) 0.088 0.099 0.000
378 0.0429 (±0.0440/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 31.7 (±54.7) 0.045 0.084 0.000
379 0.0406 (±0.0028/√100) 🟢 microsoft/Phi-3-small-128k-instruct 268.1 (±123.4) 0.083 0.039 0.000
380 0.0337 (±0.0026/√100) 🟢 augmxnt/shisa-7b-v1 590.7 (±238.2) 0.076 0.025 0.000
381 0.0284 (±0.0012/√100) 🟢 lightblue/karasu-7B-chat-plus 285.1 (±53.8) 0.080 0.005 0.000
382 0.0225 (±0.0702/√100) 💬 SakanaAI/EvoLLM-JP-A-v1-7B 5.9 (±27.6) 0.026 0.037 0.005
383 0.0180 (±0.0039/√100) 🟢 mistralai/Mistral-Nemo-Base-2407 607.5 (±344.5) 0.039 0.015 0.000
384 0.0047 (±0.0024/√100) 🟢 ai-forever/mGPT-13B 321.1 (±266.7) 0.008 0.006 0.000
385 0.0022 (±0.0006/√100) 🟢 lightblue/qarasu-14B-chat-plus-unleashed 937.5 (±557.0) 0.004 0.002 0.000
386 0.0019 (±0.0002/√100) 🟢 01-ai/Yi-1.5-9B-Chat 1440.0 (±51.9) 0.005 0.001 0.000
387 0.0018 (±0.0004/√100) 🟢 CohereForAI/aya-23-8B 1676.6 (±351.0) 0.004 0.002 0.000
388 0.0006 (±0.0002/√100) 🟢 meta-llama/Llama-2-13b-chat-hf 1523.9 (±43.5) 0.001 0.001 0.000
389 0.0000 (±0.0000/√100) 🟢 01-ai/Yi-1.5-6B 0.0 (±0.0) 0.000 0.000 0.000
390 0.0000 (±0.0000/√100) 🟢 lightblue/karasu-1.1B 0.0 (±0.0) 0.000 0.000 0.000
391 0.0000 (±0.0000/√100) 🟢 lightblue/karasu-7B-chat-plus-unleashed 0.0 (±0.0) 0.000 0.000 0.000
392 0.0000 (±0.0000/√100) 🟢 lightblue/karasu-7B-chat 0.0 (±0.0) 0.000 0.000 0.000
393 0.0000 (±0.0000/√100) 🟢 lightblue/suzume-llama-3-8B-japanese 300.0 (±0.0) 0.000 0.000 0.000
394 0.0000 (±0.0000/√100) 🟢 lightblue/suzume-llama-3-8B-multilingual 300.0 (±0.0) 0.000 0.000 0.000

Citation

If you use this repository, please cite the following paper:

@preprint{Imos2024-pre-pfgen,
  title={{pfgen-bench: 日本語事前学習モデルのための文章生成性能評価ベンチマーク}},
  author={今城, 健太郎 and 平野, 正徳 and 鈴木, 脩司 and 三上, 裕明},
  doi={10.51094/jxiv.1008},
  year={2024}
}

Or cite directory this repository:

@misc{imajo2024-pfgen
    title={{Preferred Generation Benchmark}},
    author={Kentaro Imajo and Masanori Hirano and Shuji Suzuki and Hiroaki Mikami},
    year={2024},
    url = {https://github.com/pfnet-research/pfgen-bench}
}

About

Preferred Generation Benchmark

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published