Skip to content

Implement iteration over more polynomial rings #39446

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 28 commits into
base: develop
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
28 commits
Select commit Hold shift + click to select a range
a9a3660
Implement iteration over some polynomial rings
user202729 Jan 28, 2025
72cee9e
Make cardinality return Sage Integer
user202729 Feb 3, 2025
443dd01
Make category(GF(3)[x]) enumerated
user202729 Feb 3, 2025
a3b3e1f
Make Zmod(1)[x] enumerated and remove cardinality()
user202729 Feb 3, 2025
5fb4695
Temporarily remove Enumerated from LaurentPolynomialRing
user202729 Feb 3, 2025
1f354a1
Modify some_elements() to make tests pass
user202729 Feb 3, 2025
9ec9af8
Implement correct iteration through disjoint enumerated set for infin…
user202729 Feb 4, 2025
2dd9b21
Handle the case where is_finite is not available
user202729 Feb 4, 2025
8a91beb
Fix tests
user202729 Feb 4, 2025
a1b6d67
Merge branch 'union-enumerate-inf' into more-polynomial-ring-iter
user202729 Feb 4, 2025
4563c6b
Merge branch 'improve-category-empty-finite' into more-polynomial-rin…
user202729 Feb 4, 2025
bc5c6c1
Implement iteration over more polynomial rings
user202729 Feb 4, 2025
73ee001
Fix lint
user202729 Feb 4, 2025
9e5e2ae
Merge branch 'improve-category-empty-finite' into more-polynomial-rin…
user202729 Feb 4, 2025
e54624f
Revert behavior of an_element for convenience
user202729 Feb 4, 2025
5441060
Fix some tests
user202729 Feb 4, 2025
678f208
Revert "Modify some_elements() to make tests pass"
user202729 Feb 4, 2025
834b604
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Feb 11, 2025
de970b1
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Feb 22, 2025
351dcf1
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Mar 3, 2025
7fd0b69
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Mar 10, 2025
7c7adc8
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Mar 27, 2025
16942f6
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Apr 19, 2025
a5d90da
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Apr 29, 2025
9e1391d
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 May 18, 2025
7e64212
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 May 19, 2025
6cf9584
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Jun 1, 2025
2e4160b
Merge remote-tracking branch 'upstream/develop' into more-polynomial-…
user202729 Jun 27, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/sage/categories/category.py
Original file line number Diff line number Diff line change
Expand Up @@ -1692,7 +1692,7 @@ def parent_class(self):
True
sage: Algebras(QQ).parent_class is Algebras(ZZ).parent_class
False
sage: Algebras(ZZ['t']).parent_class is Algebras(ZZ['t','x']).parent_class
sage: Algebras(ZZ['t']).parent_class is Algebras(ZZ['x']).parent_class
True

See :class:`CategoryWithParameters` for an abstract base class for
Expand Down Expand Up @@ -1742,7 +1742,7 @@ def element_class(self):
True
sage: Algebras(QQ).element_class is Algebras(ZZ).element_class
False
sage: Algebras(ZZ['t']).element_class is Algebras(ZZ['t','x']).element_class
sage: Algebras(ZZ['t']).element_class is Algebras(ZZ['x']).element_class
True

These classes are constructed with ``__slots__ = ()``, so
Expand Down
2 changes: 1 addition & 1 deletion src/sage/categories/modules_with_basis.py
Original file line number Diff line number Diff line change
Expand Up @@ -2608,7 +2608,7 @@ def _an_element_(self):
B[()] + B[(1,2)] + 3*B[(1,2,3)] + 2*B[(1,3,2)]
sage: ABA = cartesian_product((A, B, A))
sage: ABA.an_element() # indirect doctest
2*B[(0, word: )] + 2*B[(0, word: a)] + 3*B[(0, word: b)]
2*B[(0, word: )] + 2*B[(1, ())] + 3*B[(1, (1,3,2))]
"""
from .cartesian_product import cartesian_product
return cartesian_product([module.an_element() for module in self.modules])
Expand Down
18 changes: 9 additions & 9 deletions src/sage/combinat/root_system/root_lattice_realizations.py
Original file line number Diff line number Diff line change
Expand Up @@ -694,14 +694,14 @@ def positive_roots(self, index_set=None):
sage: [PR.unrank(i) for i in range(10)] # needs sage.graphs
[alpha[1],
alpha[2],
alpha[0] + alpha[1] + alpha[2] + alpha[3],
alpha[3],
2*alpha[0] + 2*alpha[1] + 2*alpha[2] + 2*alpha[3],
alpha[1] + alpha[2],
3*alpha[0] + 3*alpha[1] + 3*alpha[2] + 3*alpha[3],
alpha[2] + alpha[3],
alpha[1] + alpha[2] + alpha[3],
alpha[0] + 2*alpha[1] + alpha[2] + alpha[3],
alpha[0] + alpha[1] + 2*alpha[2] + alpha[3],
alpha[0] + alpha[1] + alpha[2] + 2*alpha[3],
alpha[0] + 2*alpha[1] + 2*alpha[2] + alpha[3]]
4*alpha[0] + 4*alpha[1] + 4*alpha[2] + 4*alpha[3],
alpha[1] + alpha[2] + alpha[3]]
"""
if self.cartan_type().is_affine():
from sage.sets.disjoint_union_enumerated_sets \
Expand Down Expand Up @@ -798,18 +798,18 @@ def positive_real_roots(self):
sage: [PR.unrank(i) for i in range(5)] # needs sage.graphs
[alpha[1],
alpha[2],
2*alpha[0] + 2*alpha[1] + alpha[2],
alpha[1] + alpha[2],
2*alpha[1] + alpha[2],
alpha[0] + alpha[1] + alpha[2]]
4*alpha[0] + 4*alpha[1] + 2*alpha[2]]

sage: Q = RootSystem(['D',3,2]).root_lattice()
sage: PR = Q.positive_roots() # needs sage.graphs
sage: [PR.unrank(i) for i in range(5)] # needs sage.graphs
[alpha[1],
alpha[2],
alpha[0] + alpha[1] + alpha[2],
alpha[1] + 2*alpha[2],
alpha[1] + alpha[2],
alpha[0] + alpha[1] + 2*alpha[2]]
2*alpha[0] + 2*alpha[1] + 2*alpha[2]]
"""
if self.cartan_type().is_finite():
return tuple(RecursivelyEnumeratedSet(self.simple_roots(),
Expand Down
6 changes: 5 additions & 1 deletion src/sage/rings/polynomial/laurent_polynomial_ring_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,8 +62,12 @@ def __init__(self, R):
self._R = R
names = R.variable_names()
self._one_element = self.element_class(self, R.one())
category = R.category()
if "Enumerated" in category.axioms():
# this ring should also be countable, but __iter__ is not yet implemented
category = category._without_axiom("Enumerated")
CommutativeRing.__init__(self, R.base_ring(), names=names,
category=R.category())
category=category)
ernames = []
for n in names:
ernames.append(n)
Expand Down
86 changes: 82 additions & 4 deletions src/sage/rings/polynomial/polynomial_ring.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,6 +153,7 @@
from sage.rings.ring import Ring, CommutativeRing
from sage.structure.element import RingElement
import sage.rings.rational_field as rational_field
from sage.rings.infinity import Infinity
from sage.rings.rational_field import QQ
from sage.rings.integer_ring import ZZ
from sage.rings.integer import Integer
Expand Down Expand Up @@ -263,7 +264,7 @@
(Dedekind domains and euclidean domains
and noetherian rings and infinite enumerated sets
and metric spaces)
and Category of infinite sets
and Category of infinite enumerated sets

sage: category(GF(7)['x'])
Join of Category of euclidean domains
Expand All @@ -273,7 +274,7 @@
and Category of commutative algebras over
(finite enumerated fields and subquotients of monoids
and quotients of semigroups)
and Category of infinite sets
and Category of infinite enumerated sets

TESTS:

Expand All @@ -286,7 +287,7 @@
Check that category for zero ring::

sage: PolynomialRing(Zmod(1), 'x').category()
Category of finite commutative rings
Category of finite enumerated commutative rings

Check ``is_finite`` inherited from category (:issue:`24432`)::

Expand All @@ -305,7 +306,7 @@
# We trust that, if category is given, it is useful and does not need to be joined
# with the default category
if base_ring.is_zero():
category = categories.rings.Rings().Commutative().Finite()
category = categories.rings.Rings().Commutative().Finite().Enumerated()
else:
defaultcat = polynomial_default_category(base_ring.category(), 1)
category = check_default_category(defaultcat, category)
Expand Down Expand Up @@ -1050,6 +1051,83 @@
h = self._cached_hash = hash((self.base_ring(),self.variable_name()))
return h

def __iter__(self):
r"""
Return iterator over the elements of this polynomial ring.

EXAMPLES::

sage: from itertools import islice
sage: R.<x> = GF(3)[]
sage: list(islice(iter(R), 10))
[0, 1, 2, x, x + 1, x + 2, 2*x, 2*x + 1, 2*x + 2, x^2]

TESTS::

sage: R.<x> = Integers(1)[]
sage: [*R]
[0]
sage: R.<x> = QQ[]
sage: l = list(islice(iter(R), 50)); l
[0, 1, -1, x, 1/2, x + 1, x^2, -1/2, -x, x^2 + 1, x^3, 2, x - 1, ...]
sage: len(set(l))
50
"""
R = self.base_ring()
# adapted from sage.modules.free_module.FreeModule_generic.__iter__
iters = []
v = []
n = 0
yield self.zero()
if R.is_zero():
return

zero = R.zero()
if R.cardinality() == Infinity:
from sage.categories.sets_cat import cartesian_product
from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets
from sage.sets.family import Family
from sage.rings.semirings.non_negative_integer_semiring import NN
from sage.sets.set import Set
R_nonzero = Set(R) - Set([zero])

def polynomials_with_degree(d):
"""
Return the family of polynomials with degree exactly ``d``.
"""
nonlocal self, R, R_nonzero
return Family(cartesian_product([R] * d + [R_nonzero]),
lambda t: self([*t]), lazy=True)

yield from DisjointUnionEnumeratedSets(Family(NN, polynomials_with_degree))
assert False, "this should not be reached"

Check warning on line 1103 in src/sage/rings/polynomial/polynomial_ring.py

View check run for this annotation

Codecov / codecov/patch

src/sage/rings/polynomial/polynomial_ring.py#L1103

Added line #L1103 was not covered by tests

while True:
if n == len(iters):
iters.append(iter(R))
v.append(next(iters[n]))
assert v[n] == zero, ("first element of iteration must be zero otherwise result "
"of this and free module __iter__ will be incorrect")
try:
v[n] = next(iters[n])
yield self(v)
n = 0
except StopIteration:
iters[n] = iter(R)
v[n] = next(iters[n])
assert v[n] == zero
n += 1

def _an_element_(self):
"""
Return an arbitrary element of this polynomial ring.

Strictly speaking this is not necessary because it is already provided by the category
framework, but before :issue:`39399` this returns the generator, we keep the behavior
because it is more convenient.
"""
return self.gen()

def _repr_(self):
try:
return self._cached_repr
Expand Down
17 changes: 17 additions & 0 deletions src/sage/rings/polynomial/polynomial_ring_constructor.py
Original file line number Diff line number Diff line change
Expand Up @@ -898,6 +898,7 @@ def _multi_variate(base_ring, names, sparse=None, order='degrevlex', implementat
from sage import categories
from sage.categories.algebras import Algebras
# Some fixed categories, in order to avoid the function call overhead
_EnumeratedSets = categories.sets_cat.Sets().Enumerated()
_FiniteSets = categories.sets_cat.Sets().Finite()
_InfiniteSets = categories.sets_cat.Sets().Infinite()
_EuclideanDomains = categories.euclidean_domains.EuclideanDomains()
Expand Down Expand Up @@ -944,12 +945,28 @@ def polynomial_default_category(base_ring_category, n_variables):
True
sage: QQ['s']['t'].category() is UniqueFactorizationDomains() & CommutativeAlgebras(QQ['s'].category()).WithBasis().Infinite()
True

TESTS::

sage: category(GF(7)['x'])
Join of Category of euclidean domains
and Category of algebras with basis over
(finite enumerated fields and subquotients of monoids
and quotients of semigroups)
and Category of commutative algebras over
(finite enumerated fields and subquotients of monoids
and quotients of semigroups)
and Category of infinite enumerated sets
"""
category = Algebras(base_ring_category).WithBasis()

if n_variables:
# here we assume the base ring to be nonzero
category = category.Infinite()
if base_ring_category.is_subcategory(_EnumeratedSets) and n_variables == 1:
# n_variables == 1 is not necessary but iteration over multivariate polynomial ring
# is not yet implemented
category = category.Enumerated()
else:
if base_ring_category.is_subcategory(_Fields):
category = category & _Fields
Expand Down
126 changes: 112 additions & 14 deletions src/sage/sets/disjoint_union_enumerated_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -392,32 +392,130 @@
"""
TESTS::

sage: from itertools import islice
sage: U4 = DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), Permutations))
sage: it = iter(U4)
sage: [next(it), next(it), next(it), next(it), next(it), next(it)]
sage: list(islice(iter(U4), 6))
[[], [1], [1, 2], [2, 1], [1, 2, 3], [1, 3, 2]]

sage: # needs sage.combinat
sage: U4 = DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), Permutations),
....: keepkey=True, facade=False)
sage: it = iter(U4)
sage: [next(it), next(it), next(it), next(it), next(it), next(it)]
[(0, []), (1, [1]), (2, [1, 2]), (2, [2, 1]), (3, [1, 2, 3]), (3, [1, 3, 2])]
sage: el = next(it); el.parent() == U4
True
sage: el.value == (3, Permutation([2,1,3]))
sage: l = list(islice(iter(U4), 7)); l
[(0, []), (1, [1]), (2, [1, 2]), (2, [2, 1]), (3, [1, 2, 3]), (3, [1, 3, 2]), (3, [2, 1, 3])]
sage: l[-1].parent() is U4
True

Check when both the set of keys and each element set is finite::

sage: list(DisjointUnionEnumeratedSets(
....: Family({1: FiniteEnumeratedSet([1,2,3]),
....: 2: FiniteEnumeratedSet([4,5,6])})))
[1, 2, 3, 4, 5, 6]

Check when the set of keys is finite but each element set is infinite::

sage: list(islice(DisjointUnionEnumeratedSets(
....: Family({1: NonNegativeIntegers(),
....: 2: NonNegativeIntegers()}), keepkey=True), 0, 10))
[(1, 0), (1, 1), (2, 0), (1, 2), (2, 1), (1, 3), (2, 2), (1, 4), (2, 3), (1, 5)]

Check when the set of keys is infinite but each element set is finite::

sage: list(islice(DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), lambda x: FiniteEnumeratedSet(range(x))),
....: keepkey=True), 0, 20))
[(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3),
(5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4)]

Check when some element sets are empty (note that if there are infinitely many sets
but only finitely many elements in total, the iteration will hang)::

sage: list(DisjointUnionEnumeratedSets(
....: Family({1: FiniteEnumeratedSet([]),
....: 2: FiniteEnumeratedSet([]),
....: 3: FiniteEnumeratedSet([]),
....: 4: FiniteEnumeratedSet([]),
....: 5: FiniteEnumeratedSet([1,2,3]),
....: 6: FiniteEnumeratedSet([4,5,6])})))
[1, 2, 3, 4, 5, 6]

Check when there's one infinite set and infinitely many finite sets::

sage: list(islice(DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), lambda x: FiniteEnumeratedSet([]) if x else NonNegativeIntegers())),
....: 0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The following cannot be determined to be finite, but the first elements can still be retrieved::

sage: U = DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), lambda x: FiniteEnumeratedSet([] if x >= 2 else [1, 2])),
....: keepkey=True)
sage: list(U) # not tested
sage: list(islice(iter(U), 5)) # not tested, hangs
sage: list(islice(iter(U), 4))
[(0, 1), (0, 2), (1, 1), (1, 2)]
"""
for k in self._family.keys():
for el in self._family[k]:
def wrap_element(el, k):
nonlocal self
if self._keepkey:
el = (k, el)
if self._facade:
return el
else:
return self.element_class(self, el) # Bypass correctness tests

keys_iter = iter(self._family.keys())
if self._keepkey:
seen_keys = []
el_iters = []
while keys_iter is not None or el_iters:
if keys_iter is not None:
try:
k = next(keys_iter)
except StopIteration:
keys_iter = None
if keys_iter is not None:
el_set = self._family[k]
try:
is_finite = el_set.is_finite()
except (AttributeError, NotImplementedError):
is_finite = False

Check warning on line 485 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L484-L485

Added lines #L484 - L485 were not covered by tests
if is_finite:
for el in el_set:
yield wrap_element(el, k)
else:
el_iters.append(iter(el_set))
if self._keepkey:
seen_keys.append(k)
any_stopped = False
for i, obj in enumerate(zip(seen_keys, el_iters) if self._keepkey else el_iters):
if self._keepkey:
k, el_iter = obj
else:
k = None
el_iter = obj
try:
el = next(el_iter)
except StopIteration:
el_iters[i] = None
any_stopped = True
continue

Check warning on line 505 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L502-L505

Added lines #L502 - L505 were not covered by tests
yield wrap_element(el, k)
if any_stopped:
if self._keepkey:
el = (k, el)
if self._facade:
yield el
filtered = [*zip(

Check warning on line 509 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L509

Added line #L509 was not covered by tests
*[(k, el_iter) for k, el_iter in zip(seen_keys, el_iters) if el_iter is not None])]
if filtered:
seen_keys = list(filtered[0])
el_iters = list(filtered[1])

Check warning on line 513 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L511-L513

Added lines #L511 - L513 were not covered by tests
else:
seen_keys = []
el_iters = []

Check warning on line 516 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L515-L516

Added lines #L515 - L516 were not covered by tests
else:
yield self.element_class(self, el) # Bypass correctness tests
el_iters = [el_iter for el_iter in el_iters if el_iter is not None]

Check warning on line 518 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L518

Added line #L518 was not covered by tests

def an_element(self):
"""
Expand Down
Loading