Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement correct iteration through disjoint enumerated set for infinite set #39443

Open
wants to merge 3 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/sage/categories/modules_with_basis.py
Original file line number Diff line number Diff line change
Expand Up @@ -2560,7 +2560,7 @@ def _an_element_(self):
B[()] + B[(1,2)] + 3*B[(1,2,3)] + 2*B[(1,3,2)]
sage: ABA = cartesian_product((A, B, A))
sage: ABA.an_element() # indirect doctest
2*B[(0, word: )] + 2*B[(0, word: a)] + 3*B[(0, word: b)]
2*B[(0, word: )] + 2*B[(1, ())] + 3*B[(1, (1,3,2))]
"""
from .cartesian_product import cartesian_product
return cartesian_product([module.an_element() for module in self.modules])
Expand Down
18 changes: 9 additions & 9 deletions src/sage/combinat/root_system/root_lattice_realizations.py
Original file line number Diff line number Diff line change
Expand Up @@ -694,14 +694,14 @@ def positive_roots(self, index_set=None):
sage: [PR.unrank(i) for i in range(10)] # needs sage.graphs
[alpha[1],
alpha[2],
alpha[0] + alpha[1] + alpha[2] + alpha[3],
alpha[3],
2*alpha[0] + 2*alpha[1] + 2*alpha[2] + 2*alpha[3],
alpha[1] + alpha[2],
3*alpha[0] + 3*alpha[1] + 3*alpha[2] + 3*alpha[3],
alpha[2] + alpha[3],
alpha[1] + alpha[2] + alpha[3],
alpha[0] + 2*alpha[1] + alpha[2] + alpha[3],
alpha[0] + alpha[1] + 2*alpha[2] + alpha[3],
alpha[0] + alpha[1] + alpha[2] + 2*alpha[3],
alpha[0] + 2*alpha[1] + 2*alpha[2] + alpha[3]]
4*alpha[0] + 4*alpha[1] + 4*alpha[2] + 4*alpha[3],
alpha[1] + alpha[2] + alpha[3]]
"""
if self.cartan_type().is_affine():
from sage.sets.disjoint_union_enumerated_sets \
Expand Down Expand Up @@ -798,18 +798,18 @@ def positive_real_roots(self):
sage: [PR.unrank(i) for i in range(5)] # needs sage.graphs
[alpha[1],
alpha[2],
2*alpha[0] + 2*alpha[1] + alpha[2],
alpha[1] + alpha[2],
2*alpha[1] + alpha[2],
alpha[0] + alpha[1] + alpha[2]]
4*alpha[0] + 4*alpha[1] + 2*alpha[2]]

sage: Q = RootSystem(['D',3,2]).root_lattice()
sage: PR = Q.positive_roots() # needs sage.graphs
sage: [PR.unrank(i) for i in range(5)] # needs sage.graphs
[alpha[1],
alpha[2],
alpha[0] + alpha[1] + alpha[2],
alpha[1] + 2*alpha[2],
alpha[1] + alpha[2],
alpha[0] + alpha[1] + 2*alpha[2]]
2*alpha[0] + 2*alpha[1] + 2*alpha[2]]
"""
if self.cartan_type().is_finite():
return tuple(RecursivelyEnumeratedSet(self.simple_roots(),
Expand Down
126 changes: 112 additions & 14 deletions src/sage/sets/disjoint_union_enumerated_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -392,32 +392,130 @@
"""
TESTS::

sage: from itertools import islice
sage: U4 = DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), Permutations))
sage: it = iter(U4)
sage: [next(it), next(it), next(it), next(it), next(it), next(it)]
sage: list(islice(iter(U4), 6))
[[], [1], [1, 2], [2, 1], [1, 2, 3], [1, 3, 2]]

sage: # needs sage.combinat
sage: U4 = DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), Permutations),
....: keepkey=True, facade=False)
sage: it = iter(U4)
sage: [next(it), next(it), next(it), next(it), next(it), next(it)]
[(0, []), (1, [1]), (2, [1, 2]), (2, [2, 1]), (3, [1, 2, 3]), (3, [1, 3, 2])]
sage: el = next(it); el.parent() == U4
True
sage: el.value == (3, Permutation([2,1,3]))
sage: l = list(islice(iter(U4), 7)); l
[(0, []), (1, [1]), (2, [1, 2]), (2, [2, 1]), (3, [1, 2, 3]), (3, [1, 3, 2]), (3, [2, 1, 3])]
sage: l[-1].parent() is U4
True

Check when both the set of keys and each element set is finite::

sage: list(DisjointUnionEnumeratedSets(
....: Family({1: FiniteEnumeratedSet([1,2,3]),
....: 2: FiniteEnumeratedSet([4,5,6])})))
[1, 2, 3, 4, 5, 6]

Check when the set of keys is finite but each element set is infinite::

sage: list(islice(DisjointUnionEnumeratedSets(
....: Family({1: NonNegativeIntegers(),
....: 2: NonNegativeIntegers()}), keepkey=True), 0, 10))
[(1, 0), (1, 1), (2, 0), (1, 2), (2, 1), (1, 3), (2, 2), (1, 4), (2, 3), (1, 5)]

Check when the set of keys is infinite but each element set is finite::

sage: list(islice(DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), lambda x: FiniteEnumeratedSet(range(x))),
....: keepkey=True), 0, 20))
[(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3),
(5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4)]

Check when some element sets are empty (note that if there are infinitely many sets
but only finitely many elements in total, the iteration will hang)::

sage: list(DisjointUnionEnumeratedSets(
....: Family({1: FiniteEnumeratedSet([]),
....: 2: FiniteEnumeratedSet([]),
....: 3: FiniteEnumeratedSet([]),
....: 4: FiniteEnumeratedSet([]),
....: 5: FiniteEnumeratedSet([1,2,3]),
....: 6: FiniteEnumeratedSet([4,5,6])})))
[1, 2, 3, 4, 5, 6]

Check when there's one infinite set and infinitely many finite sets::

sage: list(islice(DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), lambda x: FiniteEnumeratedSet([]) if x else NonNegativeIntegers())),
....: 0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The following cannot be determined to be finite, but the first elements can still be retrieved::

sage: U = DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), lambda x: FiniteEnumeratedSet([] if x >= 2 else [1, 2])),
....: keepkey=True)
sage: list(U) # not tested
sage: list(islice(iter(U), 5)) # not tested, hangs
sage: list(islice(iter(U), 4))
[(0, 1), (0, 2), (1, 1), (1, 2)]
"""
for k in self._family.keys():
for el in self._family[k]:
def wrap_element(el, k):
nonlocal self
if self._keepkey:
el = (k, el)
if self._facade:
return el
else:
return self.element_class(self, el) # Bypass correctness tests

keys_iter = iter(self._family.keys())
if self._keepkey:
seen_keys = []
el_iters = []
while keys_iter is not None or el_iters:
if keys_iter is not None:
try:
k = next(keys_iter)
except StopIteration:
keys_iter = None
if keys_iter is not None:
el_set = self._family[k]
try:
is_finite = el_set.is_finite()
except (AttributeError, NotImplementedError):
is_finite = False
if is_finite:
for el in el_set:
yield wrap_element(el, k)
else:
el_iters.append(iter(el_set))
if self._keepkey:
seen_keys.append(k)
any_stopped = False
for i, obj in enumerate(zip(seen_keys, el_iters) if self._keepkey else el_iters):
if self._keepkey:
k, el_iter = obj
else:
k = None
el_iter = obj
try:
el = next(el_iter)
except StopIteration:
el_iters[i] = None
any_stopped = True
continue

Check warning on line 505 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L502-L505

Added lines #L502 - L505 were not covered by tests
yield wrap_element(el, k)
if any_stopped:
if self._keepkey:
el = (k, el)
if self._facade:
yield el
filtered = [*zip(

Check warning on line 509 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L509

Added line #L509 was not covered by tests
*[(k, el_iter) for k, el_iter in zip(seen_keys, el_iters) if el_iter is not None])]
if filtered:
seen_keys = list(filtered[0])
el_iters = list(filtered[1])

Check warning on line 513 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L511-L513

Added lines #L511 - L513 were not covered by tests
else:
seen_keys = []
el_iters = []

Check warning on line 516 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L515-L516

Added lines #L515 - L516 were not covered by tests
else:
yield self.element_class(self, el) # Bypass correctness tests
el_iters = [el_iter for el_iter in el_iters if el_iter is not None]

Check warning on line 518 in src/sage/sets/disjoint_union_enumerated_sets.py

View check run for this annotation

Codecov / codecov/patch

src/sage/sets/disjoint_union_enumerated_sets.py#L518

Added line #L518 was not covered by tests

def an_element(self):
"""
Expand Down
Loading