-
-
Notifications
You must be signed in to change notification settings - Fork 18.8k
ENH: Introduce pandas.col
#62103
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
MarcoGorelli
wants to merge
22
commits into
pandas-dev:main
Choose a base branch
from
MarcoGorelli:pandas-col
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+403
−3
Open
ENH: Introduce pandas.col
#62103
Changes from 14 commits
Commits
Show all changes
22 commits
Select commit
Hold shift + click to select a range
3d17e56
ENH: Introduce `pandas.col`
MarcoGorelli 9fcaba3
api test, typing
MarcoGorelli b41b99d
typing
MarcoGorelli 60c09c2
add pretty repr
MarcoGorelli 9e4e0c5
improve error message
MarcoGorelli fe78aa2
test repr
MarcoGorelli 04044af
test namespaces
MarcoGorelli a95aeb4
docs
MarcoGorelli 4dc8e55
reference in dsintro
MarcoGorelli 13d8e5c
Merge remote-tracking branch 'upstream/main' into pandas-col
MarcoGorelli e2aeb4f
fixup link
MarcoGorelli fa3e793
fixup docs
MarcoGorelli 0bc918a
fixup
MarcoGorelli a0939f9
add test file
MarcoGorelli a703982
simplify, support custom series extensions too
MarcoGorelli 48228cc
test accessor
MarcoGorelli d6f55a1
:pencil: fix typo
MarcoGorelli b2ed136
typing
MarcoGorelli c8f0193
move Expr to api.typing
MarcoGorelli e6ea343
move Expr to api/typing
MarcoGorelli 96990d6
rename Expr to Expression
MarcoGorelli 548ee20
fix return type
MarcoGorelli File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,293 @@ | ||
from __future__ import annotations | ||
|
||
from collections.abc import ( | ||
Callable, | ||
Hashable, | ||
) | ||
from typing import ( | ||
TYPE_CHECKING, | ||
Any, | ||
) | ||
|
||
from pandas.core.series import Series | ||
|
||
if TYPE_CHECKING: | ||
from pandas import DataFrame | ||
|
||
|
||
# Used only for generating the str repr of expressions. | ||
_OP_SYMBOLS = { | ||
"__add__": "+", | ||
"__radd__": "+", | ||
"__sub__": "-", | ||
"__rsub__": "-", | ||
"__mul__": "*", | ||
"__rmul__": "*", | ||
"__truediv__": "/", | ||
"__rtruediv__": "/", | ||
"__floordiv__": "//", | ||
"__rfloordiv__": "//", | ||
"__mod__": "%", | ||
"__rmod__": "%", | ||
"__ge__": ">=", | ||
"__gt__": ">", | ||
"__le__": "<=", | ||
"__lt__": "<", | ||
"__eq__": "==", | ||
"__ne__": "!=", | ||
} | ||
|
||
|
||
def _parse_args(df: DataFrame, *args: Any) -> tuple[Series]: | ||
# Parse `args`, evaluating any expressions we encounter. | ||
return tuple([x(df) if isinstance(x, Expr) else x for x in args]) | ||
|
||
|
||
def _parse_kwargs(df: DataFrame, **kwargs: Any) -> dict[Hashable, Series]: | ||
# Parse `kwargs`, evaluating any expressions we encounter. | ||
return { | ||
key: val(df) if isinstance(val, Expr) else val for key, val in kwargs.items() | ||
} | ||
|
||
|
||
class Expr: | ||
""" | ||
Class representing a deferred column. | ||
|
||
This is not meant to be instantiated directly. Instead, use :meth:`pandas.col`. | ||
""" | ||
|
||
def __init__( | ||
self, func: Callable[[DataFrame], Any], repr_str: str | None = None | ||
) -> None: | ||
self._func = func | ||
self._repr_str = repr_str | ||
|
||
def __call__(self, df: DataFrame) -> Any: | ||
return self._func(df) | ||
|
||
def _with_binary_op(self, op: str, other: Any) -> Expr: | ||
op_symbol = _OP_SYMBOLS.get(op, op) | ||
|
||
if isinstance(other, Expr): | ||
if op.startswith("__r"): | ||
repr_str = f"({other._repr_str} {op_symbol} {self._repr_str})" | ||
else: | ||
repr_str = f"({self._repr_str} {op_symbol} {other._repr_str})" | ||
return Expr(lambda df: getattr(self(df), op)(other(df)), repr_str) | ||
else: | ||
if op.startswith("__r"): | ||
repr_str = f"({other!r} {op_symbol} {self._repr_str})" | ||
else: | ||
repr_str = f"({self._repr_str} {op_symbol} {other!r})" | ||
return Expr(lambda df: getattr(self(df), op)(other), repr_str) | ||
|
||
# Binary ops | ||
def __add__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__add__", other) | ||
|
||
def __radd__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__radd__", other) | ||
|
||
def __sub__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__sub__", other) | ||
|
||
def __rsub__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__rsub__", other) | ||
|
||
def __mul__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__mul__", other) | ||
|
||
def __rmul__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__rmul__", other) | ||
|
||
def __truediv__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__truediv__", other) | ||
|
||
def __rtruediv__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__rtruediv__", other) | ||
|
||
def __floordiv__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__floordiv__", other) | ||
|
||
def __rfloordiv__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__rfloordiv__", other) | ||
|
||
def __ge__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__ge__", other) | ||
|
||
def __gt__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__gt__", other) | ||
|
||
def __le__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__le__", other) | ||
|
||
def __lt__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__lt__", other) | ||
|
||
def __eq__(self, other: object) -> Expr: # type: ignore[override] | ||
return self._with_binary_op("__eq__", other) | ||
|
||
def __ne__(self, other: object) -> Expr: # type: ignore[override] | ||
return self._with_binary_op("__ne__", other) | ||
|
||
def __mod__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__mod__", other) | ||
|
||
def __rmod__(self, other: Any) -> Expr: | ||
return self._with_binary_op("__rmod__", other) | ||
|
||
# Everything else | ||
def __getattr__(self, attr: str, /) -> Callable[..., Expr]: | ||
def func(df: DataFrame, *args: Any, **kwargs: Any) -> Any: | ||
parsed_args = _parse_args(df, *args) | ||
parsed_kwargs = _parse_kwargs(df, **kwargs) | ||
return getattr(self(df), attr)(*parsed_args, **parsed_kwargs) | ||
|
||
def wrapper(*args: Any, **kwargs: Any) -> Expr: | ||
# Create a readable representation for method calls | ||
args_repr = ", ".join( | ||
repr(arg._repr_str if isinstance(arg, Expr) else arg) for arg in args | ||
) | ||
kwargs_repr = ", ".join( | ||
f"{k}={v._repr_str if isinstance(v, Expr) else v!r}" | ||
for k, v in kwargs.items() | ||
) | ||
|
||
all_args = [] | ||
if args_repr: | ||
all_args.append(args_repr) | ||
if kwargs_repr: | ||
all_args.append(kwargs_repr) | ||
|
||
args_str = ", ".join(all_args) | ||
repr_str = f"{self._repr_str}.{attr}({args_str})" | ||
|
||
return Expr(lambda df: func(df, *args, **kwargs), repr_str) | ||
|
||
return wrapper | ||
|
||
def __repr__(self) -> str: | ||
return self._repr_str or "Expr(...)" | ||
|
||
# Namespaces | ||
@property | ||
def dt(self) -> NamespaceExpr: | ||
return NamespaceExpr(self, "dt") | ||
|
||
@property | ||
def str(self) -> NamespaceExpr: | ||
return NamespaceExpr(self, "str") | ||
Dr-Irv marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
@property | ||
def cat(self) -> NamespaceExpr: | ||
return NamespaceExpr(self, "cat") | ||
|
||
@property | ||
def list(self) -> NamespaceExpr: | ||
return NamespaceExpr(self, "list") | ||
|
||
@property | ||
def sparse(self) -> NamespaceExpr: | ||
return NamespaceExpr(self, "sparse") | ||
|
||
@property | ||
def struct(self) -> NamespaceExpr: | ||
return NamespaceExpr(self, "struct") | ||
|
||
|
||
class NamespaceExpr: | ||
def __init__(self, func: Expr, namespace: str) -> None: | ||
self._func = func | ||
self._namespace = namespace | ||
|
||
def __call__(self, df: DataFrame) -> Any: | ||
return self._func(df) | ||
|
||
def __getattr__(self, attr: str) -> Any: | ||
if isinstance(getattr(getattr(Series, self._namespace), attr), property): | ||
repr_str = f"{self._func._repr_str}.{self._namespace}.{attr}" | ||
return Expr( | ||
lambda df: getattr(getattr(self(df), self._namespace), attr), | ||
repr_str, | ||
) | ||
|
||
def func(df: DataFrame, *args: Any, **kwargs: Any) -> Any: | ||
parsed_args = _parse_args(df, *args) | ||
parsed_kwargs = _parse_kwargs(df, **kwargs) | ||
return getattr(getattr(self(df), self._namespace), attr)( | ||
*parsed_args, **parsed_kwargs | ||
) | ||
|
||
def wrapper(*args: Any, **kwargs: Any) -> Expr: | ||
# Create a readable representation for namespace method calls | ||
args_repr = ", ".join( | ||
repr(arg._repr_str if isinstance(arg, Expr) else arg) for arg in args | ||
) | ||
kwargs_repr = ", ".join( | ||
f"{k}={v._repr_str if isinstance(v, Expr) else v!r}" | ||
for k, v in kwargs.items() | ||
) | ||
|
||
all_args = [] | ||
if args_repr: | ||
all_args.append(args_repr) | ||
if kwargs_repr: | ||
all_args.append(kwargs_repr) | ||
|
||
args_str = ", ".join(all_args) | ||
repr_str = f"{self._func._repr_str}.{self._namespace}.{attr}({args_str})" | ||
|
||
return Expr(lambda df: func(df, *args, **kwargs), repr_str) | ||
|
||
return wrapper | ||
|
||
|
||
def col(col_name: Hashable) -> Expr: | ||
""" | ||
Generate deferred objected representing a dataframe's column. | ||
MarcoGorelli marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
Any place which accepts ``lambda df: df[col_name]``, such as | ||
:meth:`DataFrame.assign` or :meth:`DataFrame.loc`, can also accept | ||
``pd.col(col_name)``. | ||
|
||
Arguments | ||
--------- | ||
col_name : Hashable | ||
Column name. | ||
|
||
Returns | ||
------- | ||
Expr | ||
MarcoGorelli marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
Examples | ||
-------- | ||
|
||
You can use `col` in `assign`. | ||
|
||
>>> df = pd.DataFrame({"name": ["beluga", "narwhal"], "speed": [100, 110]}) | ||
>>> df.assign(name_titlecase=pd.col("name").str.title()) | ||
name speed name_titlecase | ||
0 beluga 100 Beluga | ||
1 narwhal 110 Narwhal | ||
|
||
You can also use it for filtering. | ||
|
||
>>> df.loc[pd.col("speed") > 105] | ||
name speed | ||
1 narwhal 110 | ||
""" | ||
if not isinstance(col_name, Hashable): | ||
msg = f"Expected Hashable, got: {type(col_name)}" | ||
raise TypeError(msg) | ||
|
||
def func(df: DataFrame) -> Series: | ||
if col_name not in df.columns: | ||
msg = ( | ||
f"Column '{col_name}' not found in given DataFrame.\n\n" | ||
f"Hint: did you mean one of {df.columns.tolist()} instead?" | ||
) | ||
raise ValueError(msg) | ||
return df[col_name] | ||
|
||
return Expr(func, f"col({col_name!r})") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Maybe make this a private class, i.e.,
class _Expr
?Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for your review!
I thought about that, although the return type of
col
isExpr
, and so if anyone wanted to check if an object is an expression or annotate a parameter to a function, then they'd need this in the public APIThere was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Then I think it should go in
pandas.api.typing
. That's what we have done with things likeDataFrameGroupBy
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
sure, thanks - done ✅