Skip to content

ENH: Introduce pandas.col #62103

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 33 commits into from
Aug 22, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
33 commits
Select commit Hold shift + click to select a range
3d17e56
ENH: Introduce `pandas.col`
MarcoGorelli Aug 13, 2025
9fcaba3
api test, typing
MarcoGorelli Aug 13, 2025
b41b99d
typing
MarcoGorelli Aug 14, 2025
60c09c2
add pretty repr
MarcoGorelli Aug 14, 2025
9e4e0c5
improve error message
MarcoGorelli Aug 16, 2025
fe78aa2
test repr
MarcoGorelli Aug 16, 2025
04044af
test namespaces
MarcoGorelli Aug 16, 2025
a95aeb4
docs
MarcoGorelli Aug 16, 2025
4dc8e55
reference in dsintro
MarcoGorelli Aug 16, 2025
13d8e5c
Merge remote-tracking branch 'upstream/main' into pandas-col
MarcoGorelli Aug 16, 2025
e2aeb4f
fixup link
MarcoGorelli Aug 16, 2025
fa3e793
fixup docs
MarcoGorelli Aug 16, 2025
0bc918a
fixup
MarcoGorelli Aug 16, 2025
a0939f9
add test file
MarcoGorelli Aug 16, 2025
a703982
simplify, support custom series extensions too
MarcoGorelli Aug 17, 2025
48228cc
test accessor
MarcoGorelli Aug 17, 2025
d6f55a1
:pencil: fix typo
MarcoGorelli Aug 17, 2025
b2ed136
typing
MarcoGorelli Aug 17, 2025
c8f0193
move Expr to api.typing
MarcoGorelli Aug 17, 2025
e6ea343
move Expr to api/typing
MarcoGorelli Aug 17, 2025
96990d6
rename Expr to Expression
MarcoGorelli Aug 17, 2025
548ee20
fix return type
MarcoGorelli Aug 17, 2025
cfbd5a3
support NumPy ufuncs
MarcoGorelli Aug 19, 2025
e74438c
support NumPy ufuncs too
MarcoGorelli Aug 19, 2025
b4de244
Merge remote-tracking branch 'upstream/main' into pandas-col
MarcoGorelli Aug 19, 2025
31192e0
Merge branch 'pandas-col' of github.com:MarcoGorelli/pandas into pand…
MarcoGorelli Aug 19, 2025
83b70e8
simplify repr_str type
MarcoGorelli Aug 19, 2025
3b6906b
fix typing, avoid floating point inaccuracies
MarcoGorelli Aug 19, 2025
9fed80e
add to api reference
MarcoGorelli Aug 19, 2025
edb0e38
truncate output for wide dataframes
MarcoGorelli Aug 19, 2025
72faba9
make `max_cols` variable
MarcoGorelli Aug 19, 2025
b6f4961
truncate based on message length rather than number of columns
MarcoGorelli Aug 19, 2025
3791cf6
fixup docstring
MarcoGorelli Aug 19, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/reference/general_functions.rst
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,7 @@ Top-level evaluation
.. autosummary::
:toctree: api/

col
eval

Datetime formats
Expand Down
6 changes: 6 additions & 0 deletions doc/source/user_guide/dsintro.rst
Original file line number Diff line number Diff line change
Expand Up @@ -553,6 +553,12 @@ a function of one argument to be evaluated on the DataFrame being assigned to.
iris.assign(sepal_ratio=lambda x: (x["SepalWidth"] / x["SepalLength"])).head()
or, using :meth:`pandas.col`:

.. ipython:: python
iris.assign(sepal_ratio=pd.col("SepalWidth") / pd.col("SepalLength")).head()
:meth:`~pandas.DataFrame.assign` **always** returns a copy of the data, leaving the original
DataFrame untouched.

Expand Down
24 changes: 21 additions & 3 deletions doc/source/whatsnew/v3.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -117,10 +117,28 @@ process in more detail.

`PDEP-7: Consistent copy/view semantics in pandas with Copy-on-Write <https://pandas.pydata.org/pdeps/0007-copy-on-write.html>`__

.. _whatsnew_300.enhancements.enhancement2:
.. _whatsnew_300.enhancements.col:

Enhancement2
^^^^^^^^^^^^
``pd.col`` syntax can now be used in :meth:`DataFrame.assign` and :meth:`DataFrame.loc`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

You can now use ``pd.col`` to create callables for use in dataframe methods which accept them. For example, if you have a dataframe

.. ipython:: python
df = pd.DataFrame({'a': [1, 1, 2], 'b': [4, 5, 6]})
and you want to create a new column ``'c'`` by summing ``'a'`` and ``'b'``, then instead of

.. ipython:: python
df.assign(c = lambda df: df['a'] + df['b'])
you can now write:

.. ipython:: python
df.assign(c = pd.col('a') + pd.col('b'))
New Deprecation Policy
^^^^^^^^^^^^^^^^^^^^^^
Expand Down
2 changes: 2 additions & 0 deletions pandas/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,7 @@
Series,
DataFrame,
)
from pandas.core.col import col

from pandas.core.dtypes.dtypes import SparseDtype

Expand Down Expand Up @@ -281,6 +282,7 @@
"array",
"arrays",
"bdate_range",
"col",
"concat",
"crosstab",
"cut",
Expand Down
2 changes: 2 additions & 0 deletions pandas/api/typing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from pandas._libs.lib import NoDefault
from pandas._libs.missing import NAType

from pandas.core.col import Expression
from pandas.core.groupby import (
DataFrameGroupBy,
SeriesGroupBy,
Expand Down Expand Up @@ -41,6 +42,7 @@
"ExpandingGroupby",
"ExponentialMovingWindow",
"ExponentialMovingWindowGroupby",
"Expression",
"FrozenList",
"JsonReader",
"NAType",
Expand Down
283 changes: 283 additions & 0 deletions pandas/core/col.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
from __future__ import annotations

from collections.abc import (
Callable,
Hashable,
)
from typing import (
TYPE_CHECKING,
Any,
)

from pandas.core.series import Series

if TYPE_CHECKING:
from pandas import DataFrame


# Used only for generating the str repr of expressions.
_OP_SYMBOLS = {
"__add__": "+",
"__radd__": "+",
"__sub__": "-",
"__rsub__": "-",
"__mul__": "*",
"__rmul__": "*",
"__truediv__": "/",
"__rtruediv__": "/",
"__floordiv__": "//",
"__rfloordiv__": "//",
"__mod__": "%",
"__rmod__": "%",
"__ge__": ">=",
"__gt__": ">",
"__le__": "<=",
"__lt__": "<",
"__eq__": "==",
"__ne__": "!=",
}


def _parse_args(df: DataFrame, *args: Any) -> tuple[Series]:
# Parse `args`, evaluating any expressions we encounter.
return tuple([x(df) if isinstance(x, Expression) else x for x in args])


def _parse_kwargs(df: DataFrame, **kwargs: Any) -> dict[str, Any]:
# Parse `kwargs`, evaluating any expressions we encounter.
return {
key: val(df) if isinstance(val, Expression) else val
for key, val in kwargs.items()
}


def _pretty_print_args_kwargs(*args: Any, **kwargs: Any) -> str:
inputs_repr = ", ".join(
arg._repr_str if isinstance(arg, Expression) else repr(arg) for arg in args
)
kwargs_repr = ", ".join(
f"{k}={v._repr_str if isinstance(v, Expression) else v!r}"
for k, v in kwargs.items()
)

all_args = []
if inputs_repr:
all_args.append(inputs_repr)
if kwargs_repr:
all_args.append(kwargs_repr)

return ", ".join(all_args)


class Expression:
"""
Class representing a deferred column.
This is not meant to be instantiated directly. Instead, use :meth:`pandas.col`.
"""

def __init__(self, func: Callable[[DataFrame], Any], repr_str: str) -> None:
self._func = func
self._repr_str = repr_str

def __call__(self, df: DataFrame) -> Any:
return self._func(df)

def _with_binary_op(self, op: str, other: Any) -> Expression:
op_symbol = _OP_SYMBOLS.get(op, op)

if isinstance(other, Expression):
if op.startswith("__r"):
repr_str = f"({other._repr_str} {op_symbol} {self._repr_str})"
else:
repr_str = f"({self._repr_str} {op_symbol} {other._repr_str})"
return Expression(lambda df: getattr(self(df), op)(other(df)), repr_str)
else:
if op.startswith("__r"):
repr_str = f"({other!r} {op_symbol} {self._repr_str})"
else:
repr_str = f"({self._repr_str} {op_symbol} {other!r})"
return Expression(lambda df: getattr(self(df), op)(other), repr_str)

# Binary ops
def __add__(self, other: Any) -> Expression:
return self._with_binary_op("__add__", other)

def __radd__(self, other: Any) -> Expression:
return self._with_binary_op("__radd__", other)

def __sub__(self, other: Any) -> Expression:
return self._with_binary_op("__sub__", other)

def __rsub__(self, other: Any) -> Expression:
return self._with_binary_op("__rsub__", other)

def __mul__(self, other: Any) -> Expression:
return self._with_binary_op("__mul__", other)

def __rmul__(self, other: Any) -> Expression:
return self._with_binary_op("__rmul__", other)

def __truediv__(self, other: Any) -> Expression:
return self._with_binary_op("__truediv__", other)

def __rtruediv__(self, other: Any) -> Expression:
return self._with_binary_op("__rtruediv__", other)

def __floordiv__(self, other: Any) -> Expression:
return self._with_binary_op("__floordiv__", other)

def __rfloordiv__(self, other: Any) -> Expression:
return self._with_binary_op("__rfloordiv__", other)

def __ge__(self, other: Any) -> Expression:
return self._with_binary_op("__ge__", other)

def __gt__(self, other: Any) -> Expression:
return self._with_binary_op("__gt__", other)

def __le__(self, other: Any) -> Expression:
return self._with_binary_op("__le__", other)

def __lt__(self, other: Any) -> Expression:
return self._with_binary_op("__lt__", other)

def __eq__(self, other: object) -> Expression: # type: ignore[override]
return self._with_binary_op("__eq__", other)

def __ne__(self, other: object) -> Expression: # type: ignore[override]
return self._with_binary_op("__ne__", other)

def __mod__(self, other: Any) -> Expression:
return self._with_binary_op("__mod__", other)

def __rmod__(self, other: Any) -> Expression:
return self._with_binary_op("__rmod__", other)

def __array_ufunc__(
self, ufunc: Callable[..., Any], method: str, *inputs: Any, **kwargs: Any
) -> Expression:
def func(df: DataFrame) -> Any:
parsed_inputs = _parse_args(df, *inputs)
parsed_kwargs = _parse_kwargs(df, *kwargs)
return ufunc(*parsed_inputs, **parsed_kwargs)

args_str = _pretty_print_args_kwargs(*inputs, **kwargs)
repr_str = f"{ufunc.__name__}({args_str})"

return Expression(func, repr_str)

# Everything else
def __getattr__(self, attr: str, /) -> Any:
if attr in Series._accessors:
return NamespaceExpression(self, attr)

def func(df: DataFrame, *args: Any, **kwargs: Any) -> Any:
parsed_args = _parse_args(df, *args)
parsed_kwargs = _parse_kwargs(df, **kwargs)
return getattr(self(df), attr)(*parsed_args, **parsed_kwargs)

def wrapper(*args: Any, **kwargs: Any) -> Expression:
args_str = _pretty_print_args_kwargs(*args, **kwargs)
repr_str = f"{self._repr_str}.{attr}({args_str})"

return Expression(lambda df: func(df, *args, **kwargs), repr_str)

return wrapper

def __repr__(self) -> str:
return self._repr_str or "Expr(...)"


class NamespaceExpression:
def __init__(self, func: Expression, namespace: str) -> None:
self._func = func
self._namespace = namespace

def __call__(self, df: DataFrame) -> Any:
return self._func(df)

def __getattr__(self, attr: str) -> Any:
if isinstance(getattr(getattr(Series, self._namespace), attr), property):
repr_str = f"{self._func._repr_str}.{self._namespace}.{attr}"
return Expression(
lambda df: getattr(getattr(self(df), self._namespace), attr),
repr_str,
)

def func(df: DataFrame, *args: Any, **kwargs: Any) -> Any:
parsed_args = _parse_args(df, *args)
parsed_kwargs = _parse_kwargs(df, **kwargs)
return getattr(getattr(self(df), self._namespace), attr)(
*parsed_args, **parsed_kwargs
)

def wrapper(*args: Any, **kwargs: Any) -> Expression:
args_str = _pretty_print_args_kwargs(*args, **kwargs)
repr_str = f"{self._func._repr_str}.{self._namespace}.{attr}({args_str})"
return Expression(lambda df: func(df, *args, **kwargs), repr_str)

return wrapper


def col(col_name: Hashable) -> Expression:
"""
Generate deferred object representing a column of a DataFrame.
Any place which accepts ``lambda df: df[col_name]``, such as
:meth:`DataFrame.assign` or :meth:`DataFrame.loc`, can also accept
``pd.col(col_name)``.
Parameters
----------
col_name : Hashable
Column name.
Returns
-------
`pandas.api.typing.Expression`
A deferred object representing a column of a DataFrame.
See Also
--------
DataFrame.query : Query columns of a dataframe using string expressions.
Examples
--------
You can use `col` in `assign`.
>>> df = pd.DataFrame({"name": ["beluga", "narwhal"], "speed": [100, 110]})
>>> df.assign(name_titlecase=pd.col("name").str.title())
name speed name_titlecase
0 beluga 100 Beluga
1 narwhal 110 Narwhal
You can also use it for filtering.
>>> df.loc[pd.col("speed") > 105]
name speed
1 narwhal 110
"""
if not isinstance(col_name, Hashable):
msg = f"Expected Hashable, got: {type(col_name)}"
raise TypeError(msg)

def func(df: DataFrame) -> Series:
if col_name not in df.columns:
columns_str = str(df.columns.tolist())
max_len = 90
if len(columns_str) > max_len:
columns_str = columns_str[:max_len] + "...]"

msg = (
f"Column '{col_name}' not found in given DataFrame.\n\n"
f"Hint: did you mean one of {columns_str} instead?"
)
raise ValueError(msg)
return df[col_name]

return Expression(func, f"col({col_name!r})")


__all__ = ["Expression", "col"]
7 changes: 7 additions & 0 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -5304,6 +5304,13 @@ def assign(self, **kwargs) -> DataFrame:
Portland 17.0 62.6
Berkeley 25.0 77.0
or by using :meth:`pandas.col`:
>>> df.assign(temp_f=pd.col("temp_c") * 9 / 5 + 32)
temp_c temp_f
Portland 17.0 62.6
Berkeley 25.0 77.0
You can create multiple columns within the same assign where one
of the columns depends on another one defined within the same assign:
Expand Down
2 changes: 2 additions & 0 deletions pandas/tests/api/test_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,6 +107,7 @@ class TestPDApi(Base):
funcs = [
"array",
"bdate_range",
"col",
"concat",
"crosstab",
"cut",
Expand Down Expand Up @@ -260,6 +261,7 @@ class TestApi(Base):
"ExpandingGroupby",
"ExponentialMovingWindow",
"ExponentialMovingWindowGroupby",
"Expression",
"FrozenList",
"JsonReader",
"NaTType",
Expand Down
Loading
Loading