Skip to content

[Merged by Bors] - chore: classify porting notes about ext #17809

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Category/ModuleCat/Adjunctions.lean
Original file line number Diff line number Diff line change
Expand Up @@ -369,7 +369,7 @@ def embeddingLiftIso (F : C ⥤ D) : embedding R C ⋙ lift R F ≅ F :=
/-- Two `R`-linear functors out of the `R`-linear completion are isomorphic iff their
compositions with the embedding functor are isomorphic.
-/
-- Porting note: used to be @[ext]
-- Porting note (#11182): used to be @[ext]
def ext {F G : Free R C ⥤ D} [F.Additive] [F.Linear R] [G.Additive] [G.Linear R]
(α : embedding R C ⋙ F ≅ embedding R C ⋙ G) : F ≅ G :=
NatIso.ofComponents (fun X => α.app X)
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Homology/HomologicalComplex.lean
Original file line number Diff line number Diff line change
Expand Up @@ -244,7 +244,7 @@ instance : Category (HomologicalComplex V c) where

end

-- Porting note: added because `Hom.ext` is not triggered automatically
-- Porting note (#5229): added because `Hom.ext` is not triggered automatically
@[ext]
lemma hom_ext {C D : HomologicalComplex V c} (f g : C ⟶ D)
(h : ∀ i, f.f i = g.f i) : f = g := by
Expand Down
24 changes: 12 additions & 12 deletions Mathlib/Algebra/Lie/DirectSum.lean
Original file line number Diff line number Diff line change
Expand Up @@ -43,13 +43,13 @@ variable [∀ i, LieRingModule L (M i)] [∀ i, LieModule R L (M i)]
instance : LieRingModule L (⨁ i, M i) where
bracket x m := m.mapRange (fun _ m' => ⁅x, m'⁆) fun _ => lie_zero x
add_lie x y m := by
refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041): Originally `ext`
simp only [mapRange_apply, add_apply, add_lie]
lie_add x m n := by
refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041): Originally `ext`
simp only [mapRange_apply, add_apply, lie_add]
leibniz_lie x y m := by
refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041): Originally `ext`
simp only [mapRange_apply, lie_lie, add_apply, sub_add_cancel]

@[simp]
Expand All @@ -58,10 +58,10 @@ theorem lie_module_bracket_apply (x : L) (m : ⨁ i, M i) (i : ι) : ⁅x, m⁆

instance : LieModule R L (⨁ i, M i) where
smul_lie t x m := by
refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext i`
refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041): Originally `ext i`
simp only [smul_lie, lie_module_bracket_apply, smul_apply]
lie_smul t x m := by
refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext i`
refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041): Originally `ext i`
simp only [lie_smul, lie_module_bracket_apply, smul_apply]

variable (R ι L M)
Expand All @@ -70,7 +70,7 @@ variable (R ι L M)
def lieModuleOf [DecidableEq ι] (j : ι) : M j →ₗ⁅R,L⁆ ⨁ i, M i :=
{ lof R ι M j with
map_lie' := fun {x m} => by
refine DFinsupp.ext fun i => ?_ -- Porting note: Originally `ext i`
refine DFinsupp.ext fun i => ?_ -- Porting note (#11041): Originally `ext i`
by_cases h : j = i
· rw [← h]; simp
· -- This used to be the end of the proof before leanprover/lean4#2644
Expand Down Expand Up @@ -98,16 +98,16 @@ instance lieRing : LieRing (⨁ i, L i) :=
{ (inferInstance : AddCommGroup _) with
bracket := zipWith (fun _ => fun x y => ⁅x, y⁆) fun _ => lie_zero 0
add_lie := fun x y z => by
refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041): Originally `ext`
simp only [zipWith_apply, add_apply, add_lie]
lie_add := fun x y z => by
refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041): Originally `ext`
simp only [zipWith_apply, add_apply, lie_add]
lie_self := fun x => by
refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041): Originally `ext`
simp only [zipWith_apply, add_apply, lie_self, zero_apply]
leibniz_lie := fun x y z => by
refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041): Originally `ext`
simp only [sub_apply, zipWith_apply, add_apply, zero_apply]
apply leibniz_lie }

Expand Down Expand Up @@ -137,7 +137,7 @@ theorem lie_of [DecidableEq ι] {i j : ι} (x : L i) (y : L j) :
instance lieAlgebra : LieAlgebra R (⨁ i, L i) :=
{ (inferInstance : Module R _) with
lie_smul := fun c x y => by
refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041): Originally `ext`
simp only [zipWith_apply, smul_apply, bracket_apply, lie_smul] }

variable (R ι)
Expand All @@ -148,7 +148,7 @@ def lieAlgebraOf [DecidableEq ι] (j : ι) : L j →ₗ⁅R⁆ ⨁ i, L i :=
{ lof R ι L j with
toFun := of L j
map_lie' := fun {x y} => by
refine DFinsupp.ext fun i => ?_ -- Porting note: Originally `ext i`
refine DFinsupp.ext fun i => ?_ -- Porting note (#11041): Originally `ext i`
by_cases h : j = i
· rw [← h]
-- This used to be the end of the proof before leanprover/lean4#2644
Expand Down
10 changes: 5 additions & 5 deletions Mathlib/Algebra/MonoidAlgebra/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ def liftMagma [Module k A] [IsScalarTower k A A] [SMulCommClass k A A] :
sum_single_index, Function.comp_apply, one_smul, zero_smul, MulHom.coe_comp,
NonUnitalAlgHom.coe_to_mulHom]
right_inv F := by
-- Porting note: `ext` → `refine nonUnitalAlgHom_ext' k (MulHom.ext fun m => ?_)`
-- Porting note (#11041): `ext` → `refine nonUnitalAlgHom_ext' k (MulHom.ext fun m => ?_)`
refine nonUnitalAlgHom_ext' k (MulHom.ext fun m => ?_)
simp only [NonUnitalAlgHom.coe_mk, ofMagma_apply, NonUnitalAlgHom.toMulHom_eq_coe,
sum_single_index, Function.comp_apply, one_smul, zero_smul, MulHom.coe_comp,
Expand All @@ -109,7 +109,7 @@ In particular this provides the instance `Algebra k (MonoidAlgebra k G)`.
instance algebra {A : Type*} [CommSemiring k] [Semiring A] [Algebra k A] [Monoid G] :
Algebra k (MonoidAlgebra A G) :=
{ singleOneRingHom.comp (algebraMap k A) with
-- Porting note: `ext` → `refine Finsupp.ext fun _ => ?_`
-- Porting note (#11041): `ext` → `refine Finsupp.ext fun _ => ?_`
smul_def' := fun r a => by
refine Finsupp.ext fun _ => ?_
-- Porting note: Newly required.
Expand All @@ -125,7 +125,7 @@ def singleOneAlgHom {A : Type*} [CommSemiring k] [Semiring A] [Algebra k A] [Mon
A →ₐ[k] MonoidAlgebra A G :=
{ singleOneRingHom with
commutes' := fun r => by
-- Porting note: `ext` → `refine Finsupp.ext fun _ => ?_`
-- Porting note (#11041): `ext` → `refine Finsupp.ext fun _ => ?_`
refine Finsupp.ext fun _ => ?_
simp
rfl }
Expand Down Expand Up @@ -390,7 +390,7 @@ In particular this provides the instance `Algebra k k[G]`.
instance algebra [CommSemiring R] [Semiring k] [Algebra R k] [AddMonoid G] :
Algebra R k[G] :=
{ singleZeroRingHom.comp (algebraMap R k) with
-- Porting note: `ext` → `refine Finsupp.ext fun _ => ?_`
-- Porting note (#11041): `ext` → `refine Finsupp.ext fun _ => ?_`
smul_def' := fun r a => by
refine Finsupp.ext fun _ => ?_
-- Porting note: Newly required.
Expand All @@ -405,7 +405,7 @@ instance algebra [CommSemiring R] [Semiring k] [Algebra R k] [AddMonoid G] :
def singleZeroAlgHom [CommSemiring R] [Semiring k] [Algebra R k] [AddMonoid G] : k →ₐ[R] k[G] :=
{ singleZeroRingHom with
commutes' := fun r => by
-- Porting note: `ext` → `refine Finsupp.ext fun _ => ?_`
-- Porting note (#11041): `ext` → `refine Finsupp.ext fun _ => ?_`
refine Finsupp.ext fun _ => ?_
simp
rfl }
Expand Down
12 changes: 6 additions & 6 deletions Mathlib/Algebra/MonoidAlgebra/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -563,7 +563,7 @@ theorem liftNC_smul [MulOneClass G] {R : Type*} [Semiring R] (f : k →+* R) (g
suffices (liftNC (↑f) g).comp (smulAddHom k (MonoidAlgebra k G) c) =
(AddMonoidHom.mulLeft (f c)).comp (liftNC (↑f) g) from
DFunLike.congr_fun this φ
-- Porting note: `ext` couldn't a find appropriate theorem.
-- Porting note (#11041): `ext` couldn't a find appropriate theorem.
refine addHom_ext' fun a => AddMonoidHom.ext fun b => ?_
-- Porting note: `reducible` cannot be `local` so the proof gets more complex.
unfold MonoidAlgebra
Expand All @@ -584,7 +584,7 @@ variable (k) [Semiring k] [DistribSMul R k] [Mul G]
instance isScalarTower_self [IsScalarTower R k k] :
IsScalarTower R (MonoidAlgebra k G) (MonoidAlgebra k G) :=
⟨fun t a b => by
-- Porting note: `ext` → `refine Finsupp.ext fun _ => ?_`
-- Porting note (#11041): `ext` → `refine Finsupp.ext fun _ => ?_`
refine Finsupp.ext fun m => ?_
-- Porting note: `refine` & `rw` are required because `simp` behaves differently.
classical
Expand All @@ -600,7 +600,7 @@ also commute with the algebra multiplication. -/
instance smulCommClass_self [SMulCommClass R k k] :
SMulCommClass R (MonoidAlgebra k G) (MonoidAlgebra k G) :=
⟨fun t a b => by
-- Porting note: `ext` → `refine Finsupp.ext fun _ => ?_`
-- Porting note (#11041): `ext` → `refine Finsupp.ext fun _ => ?_`
refine Finsupp.ext fun m => ?_
-- Porting note: `refine` & `rw` are required because `simp` behaves differently.
classical
Expand Down Expand Up @@ -742,7 +742,7 @@ protected noncomputable def opRingEquiv [Monoid G] :
rw [← AddEquiv.coe_toAddMonoidHom]
refine Iff.mpr (AddMonoidHom.map_mul_iff (R := (MonoidAlgebra k G)ᵐᵒᵖ)
(S := MonoidAlgebra kᵐᵒᵖ Gᵐᵒᵖ) _) ?_
-- Porting note: Was `ext`.
-- Porting note (#11041): Was `ext`.
refine AddMonoidHom.mul_op_ext _ _ <| addHom_ext' fun i₁ => AddMonoidHom.ext fun r₁ =>
AddMonoidHom.mul_op_ext _ _ <| addHom_ext' fun i₂ => AddMonoidHom.ext fun r₂ => ?_
-- Porting note: `reducible` cannot be `local` so proof gets long.
Expand Down Expand Up @@ -924,7 +924,7 @@ instance nonUnitalNonAssocSemiring : NonUnitalNonAssocSemiring k[G] :=
simp only [mul_def]
exact Eq.trans (congr_arg (sum f) (funext₂ fun a₁ b₁ => sum_zero_index)) sum_zero
nsmul := fun n f => n • f
-- Porting note: `ext` → `refine Finsupp.ext fun _ => ?_`
-- Porting note (#11041): `ext` → `refine Finsupp.ext fun _ => ?_`
nsmul_zero := by
intros
refine Finsupp.ext fun _ => ?_
Expand Down Expand Up @@ -1399,7 +1399,7 @@ protected noncomputable def opRingEquiv [AddCommMonoid G] :
rw [Equiv.toFun_as_coe, AddEquiv.toEquiv_eq_coe]; erw [AddEquiv.coe_toEquiv]
rw [← AddEquiv.coe_toAddMonoidHom]
refine Iff.mpr (AddMonoidHom.map_mul_iff (R := k[G]ᵐᵒᵖ) (S := kᵐᵒᵖ[G]) _) ?_
-- Porting note: Was `ext`.
-- Porting note (#11041): Was `ext`.
refine AddMonoidHom.mul_op_ext _ _ <| addHom_ext' fun i₁ => AddMonoidHom.ext fun r₁ =>
AddMonoidHom.mul_op_ext _ _ <| addHom_ext' fun i₂ => AddMonoidHom.ext fun r₂ => ?_
-- Porting note: `reducible` cannot be `local` so proof gets long.
Expand Down
14 changes: 7 additions & 7 deletions Mathlib/Algebra/MonoidAlgebra/Division.lean
Original file line number Diff line number Diff line change
Expand Up @@ -69,14 +69,14 @@ theorem zero_divOf (g : G) : (0 : k[G]) /ᵒᶠ g = 0 :=

@[simp]
theorem divOf_zero (x : k[G]) : x /ᵒᶠ 0 = x := by
refine Finsupp.ext fun _ => ?_ -- Porting note: `ext` doesn't work
refine Finsupp.ext fun _ => ?_ -- Porting note (#11041): `ext` doesn't work
simp only [AddMonoidAlgebra.divOf_apply, zero_add]

theorem add_divOf (x y : k[G]) (g : G) : (x + y) /ᵒᶠ g = x /ᵒᶠ g + y /ᵒᶠ g :=
map_add (Finsupp.comapDomain.addMonoidHom _) _ _

theorem divOf_add (x : k[G]) (a b : G) : x /ᵒᶠ (a + b) = x /ᵒᶠ a /ᵒᶠ b := by
refine Finsupp.ext fun _ => ?_ -- Porting note: `ext` doesn't work
refine Finsupp.ext fun _ => ?_ -- Porting note (#11041): `ext` doesn't work
simp only [AddMonoidAlgebra.divOf_apply, add_assoc]

/-- A bundled version of `AddMonoidAlgebra.divOf`. -/
Expand All @@ -93,13 +93,13 @@ noncomputable def divOfHom : Multiplicative G →* AddMonoid.End k[G] where
(divOf_add _ _ _)

theorem of'_mul_divOf (a : G) (x : k[G]) : of' k G a * x /ᵒᶠ a = x := by
refine Finsupp.ext fun _ => ?_ -- Porting note: `ext` doesn't work
refine Finsupp.ext fun _ => ?_ -- Porting note (#11041): `ext` doesn't work
rw [AddMonoidAlgebra.divOf_apply, of'_apply, single_mul_apply_aux, one_mul]
intro c
exact add_right_inj _

theorem mul_of'_divOf (x : k[G]) (a : G) : x * of' k G a /ᵒᶠ a = x := by
refine Finsupp.ext fun _ => ?_ -- Porting note: `ext` doesn't work
refine Finsupp.ext fun _ => ?_ -- Porting note (#11041): `ext` doesn't work
rw [AddMonoidAlgebra.divOf_apply, of'_apply, mul_single_apply_aux, mul_one]
intro c
rw [add_comm]
Expand Down Expand Up @@ -134,14 +134,14 @@ theorem modOf_apply_self_add (x : k[G]) (g : G) (d : G) : (x %ᵒᶠ g) (g + d)
modOf_apply_of_exists_add _ _ _ ⟨_, rfl⟩

theorem of'_mul_modOf (g : G) (x : k[G]) : of' k G g * x %ᵒᶠ g = 0 := by
refine Finsupp.ext fun g' => ?_ -- Porting note: `ext g'` doesn't work
refine Finsupp.ext fun g' => ?_ -- Porting note (#11041): `ext g'` doesn't work
rw [Finsupp.zero_apply]
obtain ⟨d, rfl⟩ | h := em (∃ d, g' = g + d)
· rw [modOf_apply_self_add]
· rw [modOf_apply_of_not_exists_add _ _ _ h, of'_apply, single_mul_apply_of_not_exists_add _ _ h]

theorem mul_of'_modOf (x : k[G]) (g : G) : x * of' k G g %ᵒᶠ g = 0 := by
refine Finsupp.ext fun g' => ?_ -- Porting note: `ext g'` doesn't work
refine Finsupp.ext fun g' => ?_ -- Porting note (#11041): `ext g'` doesn't work
rw [Finsupp.zero_apply]
obtain ⟨d, rfl⟩ | h := em (∃ d, g' = g + d)
· rw [modOf_apply_self_add]
Expand All @@ -153,7 +153,7 @@ theorem of'_modOf (g : G) : of' k G g %ᵒᶠ g = 0 := by

theorem divOf_add_modOf (x : k[G]) (g : G) :
of' k G g * (x /ᵒᶠ g) + x %ᵒᶠ g = x := by
refine Finsupp.ext fun g' => ?_ -- Porting note: `ext` doesn't work
refine Finsupp.ext fun g' => ?_ -- Porting note (#11041): `ext` doesn't work
rw [Finsupp.add_apply] -- Porting note: changed from `simp_rw` which can't see through the type
obtain ⟨d, rfl⟩ | h := em (∃ d, g' = g + d)
swap
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/MonoidAlgebra/ToDirectSum.lean
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ theorem toDirectSum_mul [DecidableEq ι] [AddMonoid ι] [Semiring M] (f g : AddM
let _ : NonUnitalNonAssocSemiring (ι →₀ M) := AddMonoidAlgebra.nonUnitalNonAssocSemiring
revert f g
rw [AddMonoidHom.map_mul_iff]
-- Porting note: does not find `addHom_ext'`, was `ext (xi xv yi yv) : 4`
-- Porting note (#11041): does not find `addHom_ext'`, was `ext (xi xv yi yv) : 4`
refine Finsupp.addHom_ext' fun xi => AddMonoidHom.ext fun xv => ?_
refine Finsupp.addHom_ext' fun yi => AddMonoidHom.ext fun yv => ?_
dsimp only [AddMonoidHom.comp_apply, AddMonoidHom.compl₂_apply, AddMonoidHom.compr₂_apply,
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/MvPolynomial/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -404,12 +404,12 @@ theorem induction_on {M : MvPolynomial σ R → Prop} (p : MvPolynomial σ R) (h
theorem ringHom_ext {A : Type*} [Semiring A] {f g : MvPolynomial σ R →+* A}
(hC : ∀ r, f (C r) = g (C r)) (hX : ∀ i, f (X i) = g (X i)) : f = g := by
refine AddMonoidAlgebra.ringHom_ext' ?_ ?_
-- Porting note: this has high priority, but Lean still chooses `RingHom.ext`, why?
-- Porting note (#11041): this has high priority, but Lean still chooses `RingHom.ext`, why?
-- probably because of the type synonym
· ext x
exact hC _
· apply Finsupp.mulHom_ext'; intros x
-- Porting note: `Finsupp.mulHom_ext'` needs to have increased priority
-- Porting note (#11041): `Finsupp.mulHom_ext'` needs to have increased priority
apply MonoidHom.ext_mnat
exact hX _

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Polynomial/Laurent.lean
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ scoped[LaurentPolynomial] notation:9000 R "[T;T⁻¹]" => LaurentPolynomial R

open LaurentPolynomial

-- Porting note: `ext` no longer applies `Finsupp.ext` automatically
-- Porting note (#5229): `ext` no longer applies `Finsupp.ext` automatically
@[ext]
theorem LaurentPolynomial.ext [Semiring R] {p q : R[T;T⁻¹]} (h : ∀ a, p a = q a) : p = q :=
Finsupp.ext h
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/AlgebraicGeometry/Restrict.lean
Original file line number Diff line number Diff line change
Expand Up @@ -392,13 +392,13 @@ theorem image_morphismRestrict_preimage {X Y : Scheme.{u}} (f : X ⟶ Y) (U : Y.
-- Porting note: this rewrite was not necessary
rw [SetLike.mem_coe]
convert hx'
-- Porting note: `ext1` is not compiling
-- Porting note (#11041): `ext1` is not compiling
refine Subtype.ext ?_
exact (morphismRestrict_base_coe f U ⟨x, hx⟩).symm
· rintro ⟨⟨x, hx⟩, hx' : _ ∈ V.1, rfl : x = _⟩
refine ⟨⟨_, hx⟩, (?_ : (f ∣_ U).val.base ⟨x, hx⟩ ∈ V.1), rfl⟩
convert hx'
-- Porting note: `ext1` is compiling
-- Porting note (#11041): `ext1` is compiling
refine Subtype.ext ?_
exact morphismRestrict_base_coe f U ⟨x, hx⟩

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicGeometry/Spec.lean
Original file line number Diff line number Diff line change
Expand Up @@ -287,7 +287,7 @@ instance isIso_toSpecΓ (R : CommRingCat.{u}) : IsIso (toSpecΓ R) := by
@[reassoc]
theorem Spec_Γ_naturality {R S : CommRingCat.{u}} (f : R ⟶ S) :
f ≫ toSpecΓ S = toSpecΓ R ≫ Γ.map (Spec.toLocallyRingedSpace.map f.op).op := by
-- Porting note: `ext` failed to pick up one of the three lemmas
-- Porting note (#11041): `ext` failed to pick up one of the three lemmas
refine RingHom.ext fun x => Subtype.ext <| funext fun x' => ?_; symm
apply Localization.localRingHom_to_map

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicTopology/SimplexCategory.lean
Original file line number Diff line number Diff line change
Expand Up @@ -142,7 +142,7 @@ lemma id_toOrderHom (a : SimplexCategory) :
lemma comp_toOrderHom {a b c : SimplexCategory} (f : a ⟶ b) (g : b ⟶ c) :
(f ≫ g).toOrderHom = g.toOrderHom.comp f.toOrderHom := rfl

-- Porting note: added because `Hom.ext'` is not triggered automatically
-- Porting note (#5229): added because `Hom.ext'` is not triggered automatically
@[ext]
theorem Hom.ext {a b : SimplexCategory} (f g : a ⟶ b) :
f.toOrderHom = g.toOrderHom → f = g :=
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicTopology/SplitSimplicialObject.lean
Original file line number Diff line number Diff line change
Expand Up @@ -351,7 +351,7 @@ variable {C}

namespace Split

-- Porting note: added as `Hom.ext` is not triggered automatically
-- Porting note (#5229): added as `Hom.ext` is not triggered automatically
@[ext]
theorem hom_ext {S₁ S₂ : Split C} (Φ₁ Φ₂ : S₁ ⟶ S₂) (h : ∀ n : ℕ, Φ₁.f n = Φ₂.f n) : Φ₁ = Φ₂ :=
Hom.ext _ _ h
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Abelian/Pseudoelements.lean
Original file line number Diff line number Diff line change
Expand Up @@ -258,7 +258,7 @@ theorem zero_morphism_ext {P Q : C} (f : P ⟶ Q) : (∀ a, f a = 0) → f = 0 :
theorem zero_morphism_ext' {P Q : C} (f : P ⟶ Q) : (∀ a, f a = 0) → 0 = f :=
Eq.symm ∘ zero_morphism_ext f

-- Porting note: these are no longer valid as `ext` lemmas.
-- Porting note (#11182): these are no longer valid as `ext` lemmas.
-- scoped[Pseudoelement]
-- attribute [ext]
-- CategoryTheory.Abelian.Pseudoelement.zero_morphism_ext
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -245,7 +245,7 @@ instance category (F G : OplaxFunctor B C) : Category (F ⟶ G) where
id := Modification.id
comp := Modification.vcomp

-- Porting note: duplicating the `ext` lemma.
-- Porting note (#5229): duplicating the `ext` lemma.
@[ext]
lemma ext {F G : OplaxFunctor B C} {α β : F ⟶ G} {m n : α ⟶ β} (w : ∀ b, m.app b = n.app b) :
m = n := by
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/CategoryTheory/Closed/Functor.lean
Original file line number Diff line number Diff line change
Expand Up @@ -79,14 +79,14 @@ theorem expComparison_ev (A B : C) :
Limits.prod.map (𝟙 (F.obj A)) ((expComparison F A).app B) ≫ (exp.ev (F.obj A)).app (F.obj B) =
inv (prodComparison F _ _) ≫ F.map ((exp.ev _).app _) := by
convert mateEquiv_counit _ _ (prodComparisonNatIso F A).inv B using 2
apply IsIso.inv_eq_of_hom_inv_id -- Porting note: was `ext`
apply IsIso.inv_eq_of_hom_inv_id -- Porting note (#11041): was `ext`
simp only [Limits.prodComparisonNatIso_inv, asIso_inv, NatIso.isIso_inv_app, IsIso.hom_inv_id]

theorem coev_expComparison (A B : C) :
F.map ((exp.coev A).app B) ≫ (expComparison F A).app (A ⨯ B) =
(exp.coev _).app (F.obj B) ≫ (exp (F.obj A)).map (inv (prodComparison F A B)) := by
convert unit_mateEquiv _ _ (prodComparisonNatIso F A).inv B using 3
apply IsIso.inv_eq_of_hom_inv_id -- Porting note: was `ext`
apply IsIso.inv_eq_of_hom_inv_id -- Porting note (#11041): was `ext`
dsimp
simp

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Comma/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ section

variable {X Y Z : Comma L R} {f : X ⟶ Y} {g : Y ⟶ Z}

-- Porting note: this lemma was added because `CommaMorphism.ext`
-- Porting note (#5229): this lemma was added because `CommaMorphism.ext`
-- was not triggered automatically
@[ext]
lemma hom_ext (f g : X ⟶ Y) (h₁ : f.left = g.left) (h₂ : f.right = g.right) : f = g :=
Expand Down
Loading
Loading