-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added library of Big Integers for C++
- Loading branch information
Showing
1 changed file
with
156 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
#include<bits/stdc++.h> | ||
using namespace std; | ||
|
||
/* | ||
Big Integer Library | ||
by | ||
Jane Alam Jan | ||
*/ | ||
struct Bigint { | ||
// representations and structures | ||
string a; // to store the digits | ||
int sign; // sign = -1 for negative numbers, sign = 1 otherwise | ||
|
||
// constructors | ||
Bigint() {} // default constructor | ||
Bigint( string b ) { (*this) = b; } // constructor for string | ||
|
||
// some helpful methods | ||
int size() { // returns number of digits | ||
return a.size(); | ||
} | ||
|
||
Bigint inverseSign() { // changes the sign | ||
sign *= -1; | ||
return (*this); | ||
} | ||
|
||
Bigint normalize( int newSign ) { // removes leading 0, fixes sign | ||
for( int i = a.size() - 1; i > 0 && a[i] == '0'; i-- ) | ||
a.erase(a.begin() + i); | ||
sign = ( a.size() == 1 && a[0] == '0' ) ? 1 : newSign; | ||
return (*this); | ||
} | ||
|
||
// assignment operator | ||
void operator = ( string b ) { // assigns a string to Bigint | ||
a = b[0] == '-' ? b.substr(1) : b; | ||
reverse( a.begin(), a.end() ); | ||
this->normalize( b[0] == '-' ? -1 : 1 ); | ||
} | ||
|
||
|
||
// conditional operators | ||
bool operator < ( const Bigint &b ) const { // less than operator | ||
if( sign != b.sign ) return sign < b.sign; | ||
if( a.size() != b.a.size() ) | ||
return sign == 1 ? a.size() < b.a.size() : a.size() > b.a.size(); | ||
for( int i = a.size() - 1; i >= 0; i-- ) if( a[i] != b.a[i] ) | ||
return sign == 1 ? a[i] < b.a[i] : a[i] > b.a[i]; | ||
return false; | ||
} | ||
|
||
bool operator == ( const Bigint &b ) const { // operator for equality | ||
return a == b.a && sign == b.sign; | ||
} | ||
|
||
|
||
// mathematical operators | ||
Bigint operator + ( Bigint b ) { // addition operator overloading | ||
if( sign != b.sign ) return (*this) - b.inverseSign(); | ||
Bigint c; | ||
for(int i = 0, carry = 0; i<a.size() || i<b.size() || carry; i++ ) { | ||
carry+=(i<a.size() ? a[i]-48 : 0)+(i<b.a.size() ? b.a[i]-48 : 0); | ||
c.a += (carry % 10 + 48); | ||
carry /= 10; | ||
} | ||
|
||
return c.normalize(sign); | ||
} | ||
|
||
Bigint operator - ( Bigint b ) { // subtraction operator overloading | ||
if( sign != b.sign ) return (*this) + b.inverseSign(); | ||
int s = sign; sign = b.sign = 1; | ||
if( (*this) < b ) return ((b - (*this)).inverseSign()).normalize(-s); | ||
|
||
Bigint c; | ||
for( int i = 0, borrow = 0; i < a.size(); i++ ) { | ||
borrow = a[i] - borrow - (i < b.size() ? b.a[i] : 48); | ||
c.a += borrow >= 0 ? borrow + 48 : borrow + 58; | ||
borrow = borrow >= 0 ? 0 : 1; | ||
} | ||
|
||
return c.normalize(s); | ||
} | ||
|
||
Bigint operator * ( Bigint b ) { // multiplication operator overloading | ||
Bigint c("0"); | ||
for( int i = 0, k = a[i] - 48; i < a.size(); i++, k = a[i] - 48 ) { | ||
while(k--) c = c + b; // ith digit is k, so, we add k times | ||
b.a.insert(b.a.begin(), '0'); // multiplied by 10 | ||
} | ||
|
||
return c.normalize(sign * b.sign); | ||
} | ||
|
||
Bigint operator / ( Bigint b ) { // division operator overloading | ||
if( b.size() == 1 && b.a[0] == '0' ) b.a[0] /= ( b.a[0] - 48 ); | ||
|
||
Bigint c("0"), d; | ||
for( int j = 0; j < a.size(); j++ ) d.a += "0"; | ||
|
||
int dSign = sign * b.sign; b.sign = 1; | ||
for( int i = a.size() - 1; i >= 0; i-- ) { | ||
c.a.insert( c.a.begin(), '0'); | ||
c = c + a.substr( i, 1 ); | ||
while( !( c < b ) ) c = c - b, d.a[i]++; | ||
} | ||
|
||
return d.normalize(dSign); | ||
} | ||
|
||
Bigint operator % ( Bigint b ) { // modulo operator overloading | ||
if( b.size() == 1 && b.a[0] == '0' ) b.a[0] /= ( b.a[0] - 48 ); | ||
|
||
Bigint c("0"); | ||
b.sign = 1; | ||
for( int i = a.size() - 1; i >= 0; i-- ) { | ||
c.a.insert( c.a.begin(), '0'); | ||
c = c + a.substr( i, 1 ); | ||
while( !( c < b ) ) c = c - b; | ||
} | ||
|
||
return c.normalize(sign); | ||
} | ||
|
||
// output method | ||
void print() { | ||
if( sign == -1 ) putchar('-'); | ||
for( int i = a.size() - 1; i >= 0; i-- ) putchar(a[i]); | ||
} | ||
}; | ||
|
||
int main() { | ||
Bigint a, b; | ||
a = "9999999999999999999999999999999999999999"; | ||
b = "1"; | ||
|
||
Bigint sum = a + b; | ||
sum.print(); | ||
cout << endl; | ||
|
||
Bigint div = sum / (a + b); | ||
div.print(); | ||
cout << endl; | ||
|
||
Bigint sub = sum - sum; | ||
sub.print(); | ||
cout << endl; | ||
|
||
Bigint mul = (sum * sum) - b; | ||
mul.print(); | ||
cout << endl; | ||
|
||
|
||
return 0; | ||
} |