forked from apache/incubator-hugegraph-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
287 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,287 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
""" | ||
DeeperGCN | ||
References | ||
---------- | ||
Paper: https://arxiv.org/abs/2006.07739 | ||
Author's code: https://github.com/lightaime/deep_gcns_torch | ||
DGL code: https://github.com/dmlc/dgl/tree/master/examples/pytorch/deepergcn | ||
""" | ||
|
||
import dgl.function as fn | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from dgl.nn.functional import edge_softmax | ||
from dgl.nn.pytorch.glob import AvgPooling | ||
from ogb.graphproppred.mol_encoder import AtomEncoder, BondEncoder | ||
import torch | ||
|
||
|
||
class DeeperGCN(nn.Module): | ||
r""" | ||
Description | ||
----------- | ||
Introduced in "DeeperGCN: All You Need to Train Deeper GCNs <https://arxiv.org/abs/2006.07739>" | ||
Parameters | ||
---------- | ||
node_feat_dim: int | ||
Size of node feature. | ||
edge_feat_dim: int | ||
Size of edge feature. | ||
hid_dim: int | ||
Size of hidden representations. | ||
out_dim: int | ||
Size of output. | ||
num_layers: int | ||
Number of graph convolutional layers. | ||
dropout: float | ||
Dropout rate. Default is 0. | ||
beta: float | ||
A continuous variable called an inverse temperature. Default is 1.0. | ||
learn_beta: bool | ||
Whether beta is a learnable weight. Default is False. | ||
aggr: str | ||
Type of aggregation. Default is 'softmax'. | ||
mlp_layers: int | ||
Number of MLP layers in message normalization. Default is 1. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
node_feat_dim, | ||
edge_feat_dim, | ||
hid_dim, | ||
out_dim, | ||
num_layers, | ||
dropout=0.0, | ||
beta=1.0, | ||
learn_beta=False, | ||
aggr="softmax", | ||
mlp_layers=1, | ||
): | ||
super(DeeperGCN, self).__init__() | ||
|
||
self.num_layers = num_layers | ||
self.dropout = dropout | ||
self.gcns = nn.ModuleList() | ||
self.norms = nn.ModuleList() | ||
|
||
for _ in range(self.num_layers): | ||
conv = GENConv( | ||
edge_feat_dim=edge_feat_dim, | ||
in_dim=hid_dim, | ||
out_dim=hid_dim, | ||
aggregator=aggr, | ||
beta=beta, | ||
learn_beta=learn_beta, | ||
mlp_layers=mlp_layers, | ||
) | ||
|
||
self.gcns.append(conv) | ||
self.norms.append(nn.BatchNorm1d(hid_dim, affine=True)) | ||
|
||
# self.node_encoder = AtomEncoder(hid_dim) | ||
self.node_encoder = torch.nn.Sequential( | ||
torch.nn.Linear(node_feat_dim, 512), | ||
torch.nn.ReLU(), | ||
torch.nn.Linear(512, hid_dim), | ||
) | ||
# self.pooling = AvgPooling() | ||
self.output = nn.Linear(hid_dim, out_dim) | ||
|
||
self.criterion = nn.CrossEntropyLoss() | ||
|
||
def forward(self, g, edge_feats, node_feats=None): | ||
with g.local_scope(): | ||
hv = self.node_encoder(node_feats.float()) | ||
he = edge_feats | ||
|
||
for layer in range(self.num_layers): | ||
hv1 = self.norms[layer](hv) | ||
hv1 = F.relu(hv1) | ||
hv1 = F.dropout(hv1, p=self.dropout, training=self.training) | ||
hv = self.gcns[layer](g, hv1, he) + hv | ||
|
||
# h_g = self.pooling(g, hv) | ||
|
||
return self.output(hv) | ||
|
||
def loss(self, logits, labels): | ||
return self.criterion(logits, labels) | ||
|
||
def inference(self, g, edge_feats, node_feats): | ||
return self.forward(g, edge_feats, node_feats) | ||
|
||
|
||
class GENConv(nn.Module): | ||
r""" | ||
Description | ||
----------- | ||
Generalized Message Aggregator was introduced in "DeeperGCN: All You Need to Train Deeper GCNs <https://arxiv.org/abs/2006.07739>" | ||
Parameters | ||
---------- | ||
in_dim: int | ||
Input size. | ||
out_dim: int | ||
Output size. | ||
aggregator: str | ||
Type of aggregation. Default is 'softmax'. | ||
beta: float | ||
A continuous variable called an inverse temperature. Default is 1.0. | ||
learn_beta: bool | ||
Whether beta is a learnable variable or not. Default is False. | ||
p: float | ||
Initial power for power mean aggregation. Default is 1.0. | ||
learn_p: bool | ||
Whether p is a learnable variable or not. Default is False. | ||
msg_norm: bool | ||
Whether message normalization is used. Default is False. | ||
learn_msg_scale: bool | ||
Whether s is a learnable scaling factor or not in message normalization. Default is False. | ||
mlp_layers: int | ||
The number of MLP layers. Default is 1. | ||
eps: float | ||
A small positive constant in message construction function. Default is 1e-7. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
edge_feat_dim, | ||
in_dim, | ||
out_dim, | ||
aggregator="softmax", | ||
beta=1.0, | ||
learn_beta=False, | ||
p=1.0, | ||
learn_p=False, | ||
msg_norm=False, | ||
learn_msg_scale=False, | ||
mlp_layers=1, | ||
eps=1e-7, | ||
): | ||
super(GENConv, self).__init__() | ||
|
||
self.aggr = aggregator | ||
self.eps = eps | ||
|
||
channels = [in_dim] | ||
for _ in range(mlp_layers - 1): | ||
channels.append(in_dim * 2) | ||
channels.append(out_dim) | ||
|
||
self.mlp = MLP(channels) | ||
self.msg_norm = MessageNorm(learn_msg_scale) if msg_norm else None | ||
|
||
self.beta = ( | ||
nn.Parameter(torch.Tensor([beta]), requires_grad=True) | ||
if learn_beta and self.aggr == "softmax" | ||
else beta | ||
) | ||
self.p = nn.Parameter(torch.Tensor([p]), requires_grad=True) if learn_p else p | ||
|
||
# self.edge_encoder = BondEncoder(in_dim) | ||
self.edge_encoder = torch.nn.Sequential( | ||
torch.nn.Linear(edge_feat_dim, 512), | ||
torch.nn.ReLU(), | ||
torch.nn.Linear(512, in_dim), | ||
) | ||
|
||
def forward(self, g, node_feats, edge_feats): | ||
with g.local_scope(): | ||
# Node and edge feature size need to match. | ||
g.ndata["h"] = node_feats | ||
g.edata["h"] = self.edge_encoder(edge_feats.float()) | ||
g.apply_edges(fn.u_add_e("h", "h", "m")) | ||
|
||
if self.aggr == "softmax": | ||
g.edata["m"] = F.relu(g.edata["m"]) + self.eps | ||
g.edata["a"] = edge_softmax(g, g.edata["m"] * self.beta) | ||
g.update_all( | ||
lambda edge: {"x": edge.data["m"] * edge.data["a"]}, | ||
fn.sum("x", "m"), | ||
) | ||
|
||
elif self.aggr == "power": | ||
minv, maxv = 1e-7, 1e1 | ||
torch.clamp_(g.edata["m"], minv, maxv) | ||
g.update_all( | ||
lambda edge: {"x": torch.pow(edge.data["m"], self.p)}, | ||
fn.mean("x", "m"), | ||
) | ||
torch.clamp_(g.ndata["m"], minv, maxv) | ||
g.ndata["m"] = torch.pow(g.ndata["m"], self.p) | ||
|
||
else: | ||
raise NotImplementedError(f"Aggregator {self.aggr} is not supported.") | ||
|
||
if self.msg_norm is not None: | ||
g.ndata["m"] = self.msg_norm(node_feats, g.ndata["m"]) | ||
|
||
feats = node_feats + g.ndata["m"] | ||
|
||
return self.mlp(feats) | ||
|
||
|
||
class MLP(nn.Sequential): | ||
r""" | ||
Description | ||
----------- | ||
From equation (5) in "DeeperGCN: All You Need to Train Deeper GCNs <https://arxiv.org/abs/2006.07739>" | ||
""" | ||
|
||
def __init__(self, channels, act="relu", dropout=0.0, bias=True): | ||
layers = [] | ||
|
||
for i in range(1, len(channels)): | ||
layers.append(nn.Linear(channels[i - 1], channels[i], bias)) | ||
if i < len(channels) - 1: | ||
layers.append(nn.BatchNorm1d(channels[i], affine=True)) | ||
layers.append(nn.ReLU()) | ||
layers.append(nn.Dropout(dropout)) | ||
|
||
super(MLP, self).__init__(*layers) | ||
|
||
|
||
class MessageNorm(nn.Module): | ||
r""" | ||
Description | ||
----------- | ||
Message normalization was introduced in "DeeperGCN: All You Need to Train Deeper GCNs <https://arxiv.org/abs/2006.07739>" | ||
Parameters | ||
---------- | ||
learn_scale: bool | ||
Whether s is a learnable scaling factor or not. Default is False. | ||
""" | ||
|
||
def __init__(self, learn_scale=False): | ||
super(MessageNorm, self).__init__() | ||
self.scale = nn.Parameter(torch.FloatTensor([1.0]), requires_grad=learn_scale) | ||
|
||
def forward(self, feats, msg, p=2): | ||
msg = F.normalize(msg, p=2, dim=-1) | ||
feats_norm = feats.norm(p=p, dim=-1, keepdim=True) | ||
return msg * feats_norm * self.scale |