Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ENH] Added test cases for feature based clustering #2690

Open
wants to merge 28 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
28 commits
Select commit Hold shift + click to select a range
bef0d8f
Added test cases for feature based clustering
Mar 24, 2025
9db9e92
Merge branch 'aeon-toolkit:main' into test_case_for_feature_based_clu…
Ramana-Raja Mar 24, 2025
7de55cb
Automatic `pre-commit` fixes
Ramana-Raja Mar 24, 2025
f39fdca
added docstring
Mar 24, 2025
a753660
Merge remote-tracking branch 'origin/test_case_for_feature_based_clus…
Mar 24, 2025
abaf016
Automatic `pre-commit` fixes
Ramana-Raja Mar 24, 2025
4e6df5f
added .
Mar 24, 2025
29c7adf
Merge remote-tracking branch 'origin/test_case_for_feature_based_clus…
Mar 24, 2025
2f0f89e
added .
Mar 24, 2025
882d5bb
updated tsfresh
Mar 24, 2025
05c3186
Automatic `pre-commit` fixes
Ramana-Raja Mar 24, 2025
9c12732
added pytest _check_soft_dependencies for tsfresh
Mar 24, 2025
278c6b9
Automatic `pre-commit` fixes
Ramana-Raja Mar 24, 2025
4d222c9
added more testing
Mar 27, 2025
8a59ffb
Automatic `pre-commit` fixes
Ramana-Raja Mar 27, 2025
1e5cee8
added docs
Mar 27, 2025
6539699
Merge remote-tracking branch 'origin/test_case_for_feature_based_clus…
Mar 27, 2025
e7b6d93
added docs
Mar 27, 2025
77d70a6
added pytest
Mar 27, 2025
3605dd5
Automatic `pre-commit` fixes
Ramana-Raja Mar 27, 2025
4b3d76f
improved docs
Mar 27, 2025
d7f4c38
Merge remote-tracking branch 'origin/test_case_for_feature_based_clus…
Mar 27, 2025
f1a8f88
Automatic `pre-commit` fixes
Ramana-Raja Mar 27, 2025
af4be41
improved test cases
Mar 27, 2025
ee74e23
Merge remote-tracking branch 'origin/test_case_for_feature_based_clus…
Mar 27, 2025
0644583
changes made as requested by moderators
Apr 4, 2025
559ffb1
changes made as requested by moderators
Apr 4, 2025
9c0a1c1
Automatic `pre-commit` fixes
Ramana-Raja Apr 4, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions aeon/clustering/feature_based/tests/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
"""Feature Based learning clustering tests."""
88 changes: 88 additions & 0 deletions aeon/clustering/feature_based/tests/test_catch22.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
"""Tests for Catch22 Clusterer."""

import numpy as np
from sklearn import metrics

from aeon.clustering.feature_based import Catch22Clusterer
from aeon.datasets import load_basic_motions, load_gunpoint


def test_catch22_multivariate():
"""Test Catch22 Clusterer with univariate data."""
X_train, y_train = load_basic_motions(split="train")
X_test, y_test = load_basic_motions(split="test")
num_points = 12

X_train = X_train[:num_points]
y_train = y_train[:num_points]
X_test = X_test[:num_points]
y_test = y_test[:num_points]

catach22 = Catch22Clusterer(
catch24=False,
random_state=1,
)
train_result = catach22.fit_predict(X_train)
train_score = metrics.rand_score(y_train, train_result)
test_result = catach22.predict(X_test)
test_score = metrics.rand_score(y_test, test_result)
ari_test = metrics.adjusted_rand_score(y_test, test_result)
ari_train = metrics.adjusted_rand_score(y_train, train_result)
predict_proba = catach22.predict_proba(X_test)

assert len(predict_proba) == 12
assert ari_test == 0.1927353595255745
assert ari_train == 0.09810791871058164
assert len(predict_proba) == 12
assert np.array_equal(
test_result,
[3, 4, 7, 7, 7, 7, 0, 7, 0, 4, 2, 2],
)
assert np.array_equal(
train_result,
[7, 3, 0, 5, 6, 4, 7, 7, 4, 7, 1, 2],
)
assert train_score == 0.4090909090909091
assert test_score == 0.5
assert test_result.shape == (12,)
assert train_result.shape == (12,)


def test_catch22_univariate():
"""Test Catch22 Clusterer with multivariate data."""
X_train, y_train = load_gunpoint(split="train")
X_test, y_test = load_gunpoint(split="test")
num_points = 8

X_train = X_train[:num_points]
y_train = y_train[:num_points]
X_test = X_test[:num_points]
y_test = y_test[:num_points]

catach22 = Catch22Clusterer(
catch24=False,
random_state=1,
)
train_result = catach22.fit_predict(X_train)
train_score = metrics.rand_score(y_train, train_result)
test_result = catach22.predict(X_test)
test_score = metrics.rand_score(y_test, test_result)
ari_test = metrics.adjusted_rand_score(y_test, test_result)
ari_train = metrics.adjusted_rand_score(y_train, train_result)
predict_proba = catach22.predict_proba(X_test)

assert len(predict_proba) == 8
assert ari_test == 0.023255813953488372
assert ari_train == 0.0
assert np.array_equal(
test_result,
[3, 0, 1, 3, 7, 5, 2, 2],
)
assert np.array_equal(
train_result,
[5, 0, 3, 7, 4, 6, 2, 1],
)
assert train_score == 0.42857142857142855
assert test_score == 0.5714285714285714
assert test_result.shape == (8,)
assert train_result.shape == (8,)
48 changes: 48 additions & 0 deletions aeon/clustering/feature_based/tests/test_summary.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
"""Tests for Summary Clusterer."""

import numpy as np

from aeon.clustering.feature_based import SummaryClusterer
from aeon.datasets import load_basic_motions, load_gunpoint


def test_all_summary_stat_uni():
"""Test Summary Clusterer with all summary stat."""
X_train, y_train = load_gunpoint(split="train")
X_test, y_test = load_gunpoint(split="test")
num_points = 8

X_train = X_train[:num_points]
X_test = X_test[:num_points]
summary_stats_options = ["default", "percentiles", "bowley", "tukey"]
for summary_stat in summary_stats_options:
summary = SummaryClusterer(random_state=1, summary_stats=summary_stat)
train_result = summary.fit_predict(X_train)
test_result = summary.predict(X_test)
predict_proba = summary.predict_proba(X_test)
assert len(predict_proba) == 8
assert not np.isnan(train_result).any()
assert not np.isnan(test_result).any()
assert test_result.shape == (8,)
assert train_result.shape == (8,)


def test_all_summary_stat_multi():
"""Test Summary Clusterer with all summary stat."""
X_train, y_train = load_basic_motions(split="train")
X_test, y_test = load_basic_motions(split="test")
num_points = 8

X_train = X_train[:num_points]
X_test = X_test[:num_points]
summary_stats_options = ["default", "percentiles", "bowley", "tukey"]
for summary_stat in summary_stats_options:
summary = SummaryClusterer(random_state=1, summary_stats=summary_stat)
train_result = summary.fit_predict(X_train)
test_result = summary.predict(X_test)
predict_proba = summary.predict_proba(X_test)
assert len(predict_proba) == 8
assert not np.isnan(train_result).any()
assert not np.isnan(test_result).any()
assert test_result.shape == (8,)
assert train_result.shape == (8,)
64 changes: 64 additions & 0 deletions aeon/clustering/feature_based/tests/test_tsfresh.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
"""Tests for TSFresh Clusterer."""

import numpy as np
import pytest

from aeon.clustering.feature_based import TSFreshClusterer
from aeon.datasets import load_basic_motions, load_gunpoint
from aeon.utils.validation._dependencies import _check_soft_dependencies


@pytest.mark.skipif(
not _check_soft_dependencies(["tsfresh"], severity="none"),
reason="TSFresh soft dependency unavailable.",
)
def test_all_fc_parameters_uni():
"""Test TSFresh Clusterer with all FC parameters."""
X_train, y_train = load_gunpoint(split="train")
X_test, y_test = load_gunpoint(split="test")
num_points = 5

X_train = X_train[:num_points]
X_test = X_test[:num_points]
fc_parameters = ["minimal", "efficient", "comprehensive"]
for fc in fc_parameters:
tsfresh = TSFreshClusterer(
n_clusters=2, random_state=1, default_fc_parameters=fc
)

train_result = tsfresh.fit_predict(X_train)
test_result = tsfresh.predict(X_test)
predict_proba = tsfresh.predict_proba(X_test)
assert len(predict_proba) == 5
assert not np.isnan(train_result).any()
assert not np.isnan(test_result).any()
assert test_result.shape == (5,)
assert train_result.shape == (5,)


@pytest.mark.skipif(
not _check_soft_dependencies(["tsfresh"], severity="none"),
reason="TSFresh soft dependency unavailable.",
)
def test_all_fc_parameters_multi():
"""Test TSFresh Clusterer with all FC parameters."""
X_train, y_train = load_basic_motions(split="train")
X_test, y_test = load_basic_motions(split="test")
num_points = 5

X_train = X_train[:num_points]
X_test = X_test[:num_points]
fc_parameters = ["minimal", "efficient", "comprehensive"]
for fc in fc_parameters:
tsfresh = TSFreshClusterer(
n_clusters=2, random_state=1, default_fc_parameters=fc
)

train_result = tsfresh.fit_predict(X_train)
test_result = tsfresh.predict(X_test)
predict_proba = tsfresh.predict_proba(X_test)
assert len(predict_proba) == 5
assert not np.isnan(train_result).any()
assert not np.isnan(test_result).any()
assert test_result.shape == (5,)
assert train_result.shape == (5,)