Skip to content
Stephanie Hughes edited this page Jul 19, 2021 · 22 revisions

Learning "near-contact" grasping strategy with Deep Reinforcement Learning

This is an implementation of Deep Deterministic Policy Gradient from Demonstration (DDPGfD) to train a policy to perform "near-contact" grasping tasks, where object's starting position is random within graspable region. We took one "near-contact" strategy from this paper as expert demonstration and train a RL controller to handle a variety of objects with random starting position.

This environment runs on MuJoCo with an intergration of OpenAI gym to facilitate the data collection and traning process.

Table of Contents

Clone this wiki locally