-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
✅ start test normalization functions
- Loading branch information
Showing
2 changed files
with
187 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
import pandas as pd | ||
|
||
from acore import normalization_analysis as normalization | ||
|
||
|
||
def test_median_normalization_along_columns(): | ||
data = pd.DataFrame( | ||
{ | ||
0: {"a": 2, "b": 4, "c": 4}, | ||
1: {"a": 5, "b": 4, "c": 14}, | ||
2: {"a": 4, "b": 6, "c": 8}, | ||
3: {"a": 3, "b": 5, "c": 8}, | ||
4: {"a": 3, "b": 3, "c": 9}, | ||
} | ||
).T | ||
|
||
# alberto's version | ||
# expected_1 = { | ||
# "a": [-1.333333, -2.666667, -2.000000, -2.333333, -2.000000], | ||
# "b": [0.666667, -3.666667, 0.000000, -0.333333, -2.000000], | ||
# "c": [0.666667, 6.333333, 2.000000, 2.666667, 4.000000], | ||
# } | ||
|
||
expected = { | ||
0: {"a": 3.0, "b": 5.0, "c": 5.0}, | ||
1: {"a": 5.0, "b": 4.0, "c": 14.0}, | ||
2: {"a": 3.0, "b": 5.0, "c": 7.0}, | ||
3: {"a": 3.0, "b": 5.0, "c": 8.0}, | ||
4: {"a": 5.0, "b": 5.0, "c": 11.0}, | ||
} | ||
actual = normalization.median_normalization(data, normalize="samples").to_dict( | ||
orient="index" | ||
) | ||
|
||
assert actual == expected | ||
|
||
|
||
def test_median_zero_normalization_along_columns(): | ||
|
||
data = pd.DataFrame( | ||
{ | ||
0: {"a": 2, "b": 4, "c": 4}, | ||
1: {"a": 5, "b": 4, "c": 14}, | ||
2: {"a": 4, "b": 6, "c": 8}, | ||
3: {"a": 3, "b": 5, "c": 8}, | ||
4: {"a": 3, "b": 3, "c": 9}, | ||
} | ||
).T | ||
expected = { | ||
0: {"a": -2.0, "b": 0.0, "c": 0.0}, | ||
1: {"a": 0.0, "b": -1.0, "c": 9.0}, | ||
2: {"a": -2.0, "b": 0.0, "c": 2.0}, | ||
3: {"a": -2.0, "b": 0.0, "c": 3.0}, | ||
4: {"a": 0.0, "b": 0.0, "c": 6.0}, | ||
} | ||
actual = normalization.median_zero_normalization(data, normalize="samples").to_dict( | ||
orient="index" | ||
) | ||
|
||
assert actual == expected | ||
|
||
|
||
def test_zscore_normalization_along_columns(): | ||
data = pd.DataFrame( | ||
{ | ||
0: {"a": 2, "b": 4, "c": 4}, | ||
1: {"a": 5, "b": 4, "c": 14}, | ||
2: {"a": 4, "b": 6, "c": 8}, | ||
3: {"a": 3, "b": 5, "c": 8}, | ||
4: {"a": 3, "b": 3, "c": 9}, | ||
} | ||
).T | ||
expected = { | ||
0: {"a": -1.1547005383792517, "b": 0.5773502691896256, "c": 0.5773502691896256}, | ||
1: { | ||
"a": -0.48418202613504197, | ||
"b": -0.6657502859356828, | ||
"c": 1.1499323120707245, | ||
}, | ||
2: {"a": -1.0, "b": 0.0, "c": 1.0}, | ||
3: { | ||
"a": -0.9271726499455306, | ||
"b": -0.13245323570650427, | ||
"c": 1.0596258856520353, | ||
}, | ||
4: { | ||
"a": -0.5773502691896258, | ||
"b": -0.5773502691896258, | ||
"c": 1.1547005383792517, | ||
}, | ||
} | ||
actual = normalization.zscore_normalization(data, normalize="samples").to_dict( | ||
orient="index" | ||
) | ||
|
||
assert actual == expected | ||
|
||
|
||
def test_median_polish_normalizaton(): | ||
data = pd.DataFrame( | ||
{ | ||
0: {"a": 2, "b": 4, "c": 4}, | ||
1: {"a": 5, "b": 4, "c": 14}, | ||
2: {"a": 4, "b": 6, "c": 8}, | ||
3: {"a": 3, "b": 5, "c": 8}, | ||
4: {"a": 3, "b": 3, "c": 9}, | ||
} | ||
).T | ||
expected = { | ||
0: {"a": 2.0, "b": 4.0, "c": 7.0}, | ||
1: {"a": 5.0, "b": 7.0, "c": 10.0}, | ||
2: {"a": 4.0, "b": 6.0, "c": 9.0}, | ||
3: {"a": 3.0, "b": 5.0, "c": 8.0}, | ||
4: {"a": 3.0, "b": 5.0, "c": 8.0}, | ||
} | ||
actual = normalization.median_polish_normalization(data).to_dict(orient="index") | ||
|
||
assert actual == expected | ||
|
||
|
||
def test_quantile_normalization_along_index(): | ||
data = pd.DataFrame( | ||
{ | ||
0: {"a": 2, "b": 4, "c": 4}, | ||
1: {"a": 5, "b": 4, "c": 14}, | ||
2: {"a": 4, "b": 6, "c": 8}, | ||
3: {"a": 3, "b": 5, "c": 8}, | ||
4: {"a": 3, "b": 3, "c": 9}, | ||
} | ||
).T | ||
expected = { | ||
0: {"a": 3.2, "b": 4.6, "c": 4.6}, | ||
1: {"a": 4.6, "b": 3.2, "c": 8.6}, | ||
2: {"a": 3.2, "b": 4.6, "c": 8.6}, | ||
3: {"a": 3.2, "b": 4.6, "c": 8.6}, | ||
4: {"a": 3.2, "b": 3.2, "c": 8.6}, | ||
} | ||
actual = normalization.quantile_normalization(data).to_dict(orient="index") | ||
assert actual == expected | ||
|
||
|
||
def test_linear_normalization_along_columns(): | ||
data = pd.DataFrame( | ||
{ | ||
0: {"a": 2, "b": 4, "c": 4}, | ||
1: {"a": 5, "b": 4, "c": 14}, | ||
2: {"a": 4, "b": 6, "c": 8}, | ||
3: {"a": 3, "b": 5, "c": 8}, | ||
4: {"a": 3, "b": 3, "c": 9}, | ||
} | ||
).T | ||
expected = { | ||
0: { | ||
"a": 0.11764705882352941, | ||
"b": 0.18181818181818182, | ||
"c": 0.09302325581395349, | ||
}, | ||
1: { | ||
"a": 0.29411764705882354, | ||
"b": 0.18181818181818182, | ||
"c": 0.32558139534883723, | ||
}, | ||
2: { | ||
"a": 0.23529411764705882, | ||
"b": 0.2727272727272727, | ||
"c": 0.18604651162790697, | ||
}, | ||
3: { | ||
"a": 0.17647058823529413, | ||
"b": 0.22727272727272727, | ||
"c": 0.18604651162790697, | ||
}, | ||
4: { | ||
"a": 0.17647058823529413, | ||
"b": 0.13636363636363635, | ||
"c": 0.20930232558139536, | ||
}, | ||
} | ||
|
||
actual = normalization.linear_normalization(data, method="l1", normalize="samples").to_dict( | ||
orient="index" | ||
) | ||
assert actual == expected |