-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
🚧 add py percent version of tutorial
- Loading branch information
Showing
1 changed file
with
161 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# --- | ||
# jupyter: | ||
# jupytext: | ||
# text_representation: | ||
# extension: .py | ||
# format_name: percent | ||
# format_version: '1.3' | ||
# jupytext_version: 1.16.4 | ||
# kernelspec: | ||
# display_name: .venv | ||
# language: python | ||
# name: python3 | ||
# --- | ||
|
||
# %% [markdown] | ||
# # ANCOVA analysis | ||
|
||
# %% | ||
# include a PCA colored by groups as well as covariance factors | ||
# This is a new update | ||
|
||
# %% [markdown] | ||
# Import data. | ||
|
||
# %% | ||
import pandas as pd | ||
import acore.differential_regulation as ad | ||
from pathlib import Path | ||
import numpy as np | ||
|
||
folder_out = Path("data") | ||
|
||
# %% | ||
CLINIC: str = 'https://raw.githubusercontent.com/RasmussenLab/njab/HEAD/docs/tutorial/data/alzheimer/clinic_ml.csv' # clincial data | ||
OMICS: str = 'https://raw.githubusercontent.com/RasmussenLab/njab/HEAD/docs/tutorial/data/alzheimer/proteome.csv' # omics data | ||
|
||
# %% | ||
clinic = pd.read_csv(CLINIC, index_col=0).convert_dtypes() | ||
omics = pd.read_csv(OMICS, index_col=0) | ||
|
||
# %% | ||
clinic | ||
|
||
# %% | ||
omics | ||
|
||
# %% [markdown] | ||
# ### Filtering data | ||
|
||
# %% [markdown] | ||
# If data is already filtered and/or imputed, skip this step. | ||
|
||
# %% | ||
# Filtering parameters | ||
freq_cutoff = 0.7 | ||
|
||
|
||
# %% | ||
M_before = omics.shape[1] | ||
omics = omics.dropna(thresh=int(len(omics) * freq_cutoff), axis=1) | ||
M_after = omics.shape[1] | ||
msg = ( | ||
f"Removed {M_before-M_after} features with more than {freq_cutoff*100}% missing values." # if theres 100 feat with >30% missing, how can there be 400 feat with >70% | ||
f"\nRemaining features: {M_after} (of {M_before})") | ||
print(msg) | ||
# keep a map of all proteins in protein group, but only display first protein | ||
# proteins are unique to protein groups | ||
pg_map = {k: k.split(";")[0] for k in omics.columns} | ||
omics = omics.rename(columns=pg_map) | ||
# log2 transform raw intensity data: | ||
omics = np.log2(omics + 1) | ||
omics | ||
|
||
# %% | ||
|
||
# %% [markdown] | ||
# Consider replacing with the filter from the acore package! | ||
|
||
# %% [markdown] | ||
# ### Preparing metadata | ||
|
||
# %% | ||
clinic['age'].info() | ||
|
||
# %% | ||
clinic_omics = omics.join(clinic) | ||
clinic_omics | ||
|
||
# %% | ||
omics_group = clinic_omics.drop(columns = ['Kiel','Magdeburg','Sweden','male','age']) | ||
|
||
# %% | ||
omics_group | ||
|
||
# %% | ||
|
||
# %% [markdown] | ||
# ### Checking missing data | ||
|
||
# %% | ||
data_completeness = omics_group.groupby("AD").count().divide(clinic['AD'].value_counts(), axis=0) | ||
data_completeness | ||
|
||
# %% | ||
data_completeness.T.sort_values(0).plot(style='.',ylim=(0,1)) | ||
|
||
# %% [markdown] | ||
# ### Running ANCOVA analysis | ||
|
||
# %% | ||
clinic_omics | ||
|
||
# %% | ||
clinic_omics.index.to_series().info() | ||
|
||
# %% | ||
clinic_omics.dtypes.value_counts() | ||
|
||
# %% | ||
col='A0A024QZX5' | ||
group="AD" | ||
covariates=['male',] | ||
clinic_omics[[group, col] + covariates] | ||
|
||
# %% | ||
ad.calculate_ancova(clinic_omics.astype('float'), column='A0A024QZX5', group="AD", covariates=['male',]) | ||
|
||
# %% | ||
clinic_omics | ||
|
||
# %% | ||
clinic_omics = clinic_omics.astype(float) # this is no needed for run_ancova (the regex where groups are joined) | ||
ad.calculate_ancova(clinic_omics, column='A0A024QZX5', group="AD", covariates=['male',]) | ||
|
||
# %% | ||
|
||
ancova = ad.run_ancova( | ||
clinic_omics.astype({'AD':str}), | ||
# subject='Sample ID', # not used | ||
drop_cols=['Kiel','Magdeburg','Sweden','age', | ||
], | ||
group='AD', # needs to be a string | ||
covariates=['male',]) # need to be floats? | ||
|
||
# %% | ||
anova = ad.run_anova(clinic_omics.reset_index(), | ||
subject='Sample ID', | ||
drop_cols=['Kiel','Magdeburg','Sweden','age','male'], | ||
group='AD') | ||
|
||
# %% [markdown] | ||
# ### Running ANOVA analysis (optional) | ||
|
||
# %% | ||
|
||
# %% | ||
|
||
# %% [markdown] | ||
# ### Comparing ANOVA and ANCOVA results | ||
|
||
# %% |