-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
:constructions: add enrichtment example to docs
- Loading branch information
Showing
2 changed files
with
332 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,331 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f79a8051", | ||
"metadata": { | ||
"lines_to_next_cell": 2 | ||
}, | ||
"source": [ | ||
"# Enrichment analysis\n", | ||
"\n", | ||
"- we need some groups of genes to compute clusters\n", | ||
"- we need functional annotations, i.e. a category summarizing a set of genes.\n", | ||
"-\n", | ||
"You can start with watching Lars Juhl Jensen's brief introduction to enrichment analysis\n", | ||
"on [youtube](https://www.youtube.com/watch?v=2NC1QOXmc5o).\n", | ||
"\n", | ||
"Use example data for ovarian cancer\n", | ||
"([PXD010372](https://github.com/Multiomics-Analytics-Group/acore/tree/main/example_data/PXD010372))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "956ed7b7", | ||
"metadata": { | ||
"lines_to_next_cell": 2, | ||
"tags": [ | ||
"hide-output" | ||
] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"%pip install acore" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a3030d08", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from pathlib import Path\n", | ||
"\n", | ||
"import pandas as pd\n", | ||
"\n", | ||
"import acore\n", | ||
"import acore.differential_regulation\n", | ||
"import acore.enrichment_analysis" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "fddd607c", | ||
"metadata": {}, | ||
"source": [ | ||
"Parameters of this notebook" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6af9349a", | ||
"metadata": { | ||
"tags": [ | ||
"parameters" | ||
] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"base_path: str = (\n", | ||
" \"https://raw.githubusercontent.com/Multiomics-Analytics-Group/acore/refs/heads/main/\"\n", | ||
" \"example_data/PXD010372/processed\"\n", | ||
")\n", | ||
"omics: str = f\"{base_path}/omics.csv\"\n", | ||
"meta_pgs: str = f\"{base_path}/meta_pgs.csv\"\n", | ||
"meta: str = f\"{base_path}/meta_patients.csv\"\n", | ||
"N_to_sample: int = 1_000" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "10ed1830", | ||
"metadata": {}, | ||
"source": [ | ||
"# Load processed data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8d70ef4c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df_omics = pd.read_csv(omics, index_col=0)\n", | ||
"df_meta_pgs = pd.read_csv(meta_pgs, index_col=0)\n", | ||
"df_meta = pd.read_csv(meta, index_col=0)\n", | ||
"df_omics" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "b3897e1f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df_omics.notna().sum().sort_values(ascending=True).plot()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "8ce47108", | ||
"metadata": {}, | ||
"source": [ | ||
"Keep only features with a certain amount of non-NaN values and select 100 of these\n", | ||
"for illustration. Add the ones which were differently regulated in the ANOVA using all\n", | ||
"the protein groups." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f3a8ab49", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"idx_always_included = [\"Q5HYN5\", \"P39059\", \"O43432\", \"O43175\"]\n", | ||
"df_omics[idx_always_included]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1145a2cd", | ||
"metadata": { | ||
"lines_to_next_cell": 2 | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"df_omics = (\n", | ||
" df_omics\n", | ||
" # .dropna(axis=1)\n", | ||
" .drop(idx_always_included, axis=1)\n", | ||
" .dropna(thresh=18, axis=1)\n", | ||
" .sample(\n", | ||
" N_to_sample - len(idx_always_included),\n", | ||
" axis=1,\n", | ||
" random_state=42,\n", | ||
" )\n", | ||
" .join(df_omics[idx_always_included])\n", | ||
")\n", | ||
"df_omics" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "aea77e80", | ||
"metadata": { | ||
"lines_to_next_cell": 2 | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"df_meta" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "4bbf5dc4", | ||
"metadata": {}, | ||
"source": [ | ||
"## Compute up and downregulated genes\n", | ||
"These will be used to find enrichments in the set of both up and downregulated genes." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "231bb6da", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"group = \"Status\"\n", | ||
"covariates = [\"PlatinumValue\"]\n", | ||
"diff_reg = acore.differential_regulation.run_anova(\n", | ||
" df_omics.join(df_meta[[group]]),\n", | ||
" drop_cols=[],\n", | ||
" subject=None,\n", | ||
" group=group,\n", | ||
")\n", | ||
"diff_reg.describe(exclude=[\"float\"])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1e347b06", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"diff_reg.query(\"rejected == True\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "d6c0a225", | ||
"metadata": {}, | ||
"source": [ | ||
"## Find functional annotations, here pathways\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d2668415", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from acore.io.uniprot import (\n", | ||
" check_id_mapping_results_ready,\n", | ||
" get_id_mapping_results_link,\n", | ||
" get_id_mapping_results_search,\n", | ||
" submit_id_mapping,\n", | ||
")\n", | ||
"\n", | ||
"\n", | ||
"def fetch_annotations(ids: pd.Index | list) -> pd.DataFrame:\n", | ||
" \"\"\"Fetch annotations for UniProt IDs. Combines several calls to the API of UniProt's\n", | ||
" knowledgebase (KB).\n", | ||
"\n", | ||
" Parameters\n", | ||
" ----------\n", | ||
" ids : pd.Index | list\n", | ||
" Iterable of UniProt IDs. Fetches annotations as speecified by the specified fields.\n", | ||
" fields : str, optional\n", | ||
" Fields to fetch, by default \"accession,go_p,go_c. See for availble fields:\n", | ||
" https://www.uniprot.org/help/return_fields\n", | ||
"\n", | ||
" Returns\n", | ||
" -------\n", | ||
" pd.DataFrame\n", | ||
" DataFrame with annotations of the UniProt IDs.\n", | ||
" \"\"\"\n", | ||
" job_id = submit_id_mapping(from_db=\"UniProtKB_AC-ID\", to_db=\"UniProtKB\", ids=ids)\n", | ||
"\n", | ||
" if check_id_mapping_results_ready(job_id):\n", | ||
" link = get_id_mapping_results_link(job_id)\n", | ||
" # add fields to the link to get more information\n", | ||
" # From and Entry (accession) are the same for UniProt IDs.\n", | ||
" results = get_id_mapping_results_search(\n", | ||
" link + \"?fields=accession,go_p,go_c,go_f&format=tsv\"\n", | ||
" )\n", | ||
" header = results.pop(0).split(\"\\t\")\n", | ||
" results = [line.split(\"\\t\") for line in results]\n", | ||
" df = pd.DataFrame(results, columns=header)\n", | ||
" return df\n", | ||
"\n", | ||
"\n", | ||
"fname_annotations = \"downloaded/annotations.csv\"\n", | ||
"fname = Path(fname_annotations)\n", | ||
"try:\n", | ||
" annotations = pd.read_csv(fname, index_col=0)\n", | ||
" print(f\"Loaded annotations from {fname}\")\n", | ||
"except FileNotFoundError:\n", | ||
" print(f\"Fetching annotations for {df_omics.columns.size} UniProt IDs.\")\n", | ||
" annotations = fetch_annotations(df_omics.columns)\n", | ||
" annotations = (\n", | ||
" annotations.set_index(\"Entry\")\n", | ||
" .rename_axis(\"identifier\")\n", | ||
" .drop(\"From\", axis=1)\n", | ||
" .rename_axis(\"source\", axis=1)\n", | ||
" .stack()\n", | ||
" .to_frame(\"annotation\")\n", | ||
" .replace(\"\", pd.NA)\n", | ||
" .dropna()\n", | ||
" .sort_values([\"source\", \"annotation\"])\n", | ||
" .reset_index()\n", | ||
" )\n", | ||
" fname.parent.mkdir(exist_ok=True, parents=True)\n", | ||
" annotations.to_csv(fname, index=True)\n", | ||
"\n", | ||
"annotations" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "4165bc94", | ||
"metadata": {}, | ||
"source": [ | ||
"## Enrichment analysis\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f300c5b5", | ||
"metadata": { | ||
"lines_to_next_cell": 2 | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"ret = acore.enrichment_analysis.run_regulation_enrichment(\n", | ||
" regulation_data=diff_reg,\n", | ||
" annotation=annotations,\n", | ||
" correction_alpha=0.01,\n", | ||
")\n", | ||
"ret" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6dd57b99", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"jupytext": { | ||
"cell_metadata_filter": "tags,-all", | ||
"main_language": "python", | ||
"notebook_metadata_filter": "-all" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters