Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix multihead issue #13

Merged
merged 1 commit into from
Jul 21, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 3 additions & 4 deletions src/functional.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ Hopfield layer forward function.
- `key::AbstractArray`:
- `value::AbstractArray`:
- `max_iter`: `-1` for iteration until stable.
- `ϵ`:
- `ϵ`: The error tolerance for convergence.
"""
function hopfield_forward(Qt, Kt, Vt, out_proj, dropout, heads::Int,
β::AbstractArray, query::AbstractArray, key::AbstractArray, value::AbstractArray,
Expand All @@ -25,11 +25,10 @@ function hopfield_forward(Qt, Kt, Vt, out_proj, dropout, heads::Int,

 = attention_prob(Q, K, β)
 = multiple_updates(Â, Q, K, β, heads, max_iter, ϵ)
 = move_heads_to_first(Â, heads)
V = move_heads_to_first(V, heads)

V = dropout(V)
attn_out = batched_mul(V, batched_transpose(Â))
attn_out = batched_innerprod(V, Â, dims=2)
attn_out = move_heads_to_first(attn_out, heads)
return out_proj(attn_out)
end

Expand Down
10 changes: 5 additions & 5 deletions test/cuda.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
l = HopfieldCore(emb_dim, heads; kdim=kdim, vdim=vdim,
head_dim=head_dim, pattern_dim=pattern_dim) |> gpu
Y = l(Q, K, V)
@test size(Y) == (emb_dim, heads*target_len, batch_size)
@test size(Y) == (emb_dim, target_len, batch_size)

g = Zygote.gradient(() -> sum(l(Q, K, V)), Flux.params(l))
@test length(g.grads) == 6
Expand All @@ -28,7 +28,7 @@
l = HopfieldCore(emb_dim, heads; kdim=kdim, vdim=vdim,
head_dim=head_dim, pattern_dim=pattern_dim, enable_out_proj=false) |> gpu
Y = l(Q, K, V)
@test size(Y) == (heads*pattern_dim, heads*target_len, batch_size)
@test size(Y) == (heads*pattern_dim, target_len, batch_size)

g = Zygote.gradient(() -> sum(l(Q, K, V)), Flux.params(l))
@test length(g.grads) == 4
Expand All @@ -38,17 +38,17 @@
l = HopfieldCore(emb_dim, heads; kdim=kdim, vdim=kdim,
head_dim=head_dim, pattern_dim=pattern_dim) |> gpu
Y = l(Q, nothing, nothing)
@test size(Y) == (emb_dim, heads*target_len, batch_size)
@test size(Y) == (emb_dim, target_len, batch_size)

g = Zygote.gradient(() -> sum(l(Q, nothing, nothing)), Flux.params(l))
@test length(g.grads) == 8
@test length(g.grads) == 10
end

@testset "static Q" begin
l = HopfieldCore(emb_dim, heads; kdim=kdim, vdim=vdim,
head_dim=head_dim, pattern_dim=pattern_dim) |> gpu
Y = l(nothing, K, V)
@test size(Y) == (emb_dim, heads*emb_dim, batch_size)
@test size(Y) == (emb_dim, emb_dim, batch_size)

g = Zygote.gradient(() -> sum(l(nothing, K, V)), Flux.params(l))
@test length(g.grads) == 8
Expand Down
26 changes: 13 additions & 13 deletions test/layer.jl
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@
@test size(l.linear_v(V)) == (heads*pattern_dim, source_len, batch_size)

Y = l(Q, K, V)
@test size(Y) == (emb_dim, heads*target_len, batch_size)
@test size(Y) == (emb_dim, target_len, batch_size)

g = Zygote.gradient(() -> sum(l(Q, K, V)), Flux.params(l))
@test length(g.grads) == 6
Expand All @@ -41,7 +41,7 @@
l = HopfieldCore(emb_dim, heads; kdim=kdim, vdim=vdim,
head_dim=head_dim, pattern_dim=pattern_dim, enable_out_proj=false)
Y = l(Q, K, V)
@test size(Y) == (heads*pattern_dim, heads*target_len, batch_size)
@test size(Y) == (heads*pattern_dim, target_len, batch_size)

g = Zygote.gradient(() -> sum(l(Q, K, V)), Flux.params(l))
@test length(g.grads) == 4
Expand All @@ -51,17 +51,17 @@
l = HopfieldCore(emb_dim, heads; kdim=kdim, vdim=kdim,
head_dim=head_dim, pattern_dim=pattern_dim)
Y = l(Q, nothing, nothing)
@test size(Y) == (emb_dim, heads*target_len, batch_size)
@test size(Y) == (emb_dim, target_len, batch_size)

g = Zygote.gradient(() -> sum(l(Q, nothing, nothing)), Flux.params(l))
@test length(g.grads) == 8
@test length(g.grads) == 10
end

@testset "static Q" begin
l = HopfieldCore(emb_dim, heads; kdim=kdim, vdim=vdim,
head_dim=head_dim, pattern_dim=pattern_dim)
Y = l(nothing, K, V)
@test size(Y) == (emb_dim, heads*emb_dim, batch_size)
@test size(Y) == (emb_dim, emb_dim, batch_size)

g = Zygote.gradient(() -> sum(l(nothing, K, V)), Flux.params(l))
@test length(g.grads) == 8
Expand All @@ -81,7 +81,7 @@
@test Hopfields.pattern_projection_dim(l) == pattern_projection_dim

Y = l(Q, K, V)
@test size(Y) == (out_channel, heads*target_len, batch_size)
@test size(Y) == (out_channel, target_len, batch_size)

g = Zygote.gradient(() -> sum(l(Q, K, V)), Flux.params(l))
@test length(g.grads) == 6
Expand All @@ -100,10 +100,10 @@
@test Hopfields.pattern_projection_dim(l) == stored_pattern_dim

Y = l(Q, nothing, nothing)
@test size(Y) == (out_channel, heads*target_len, batch_size)
@test size(Y) == (out_channel, target_len, batch_size)

g = Zygote.gradient(() -> sum(l(Q, nothing, nothing)), Flux.params(l))
@test length(g.grads) == 8
@test length(g.grads) == 10
end

@testset "HopfieldPooling" begin
Expand All @@ -120,7 +120,7 @@
@test Hopfields.pattern_projection_dim(l) == pattern_projection_dim

Y = l(nothing, K, V)
@test size(Y) == (out_channel, heads*emb_dim, batch_size)
@test size(Y) == (out_channel, emb_dim, batch_size)

g = Zygote.gradient(() -> sum(l(nothing, K, V)), Flux.params(l))
@test length(g.grads) == 8
Expand All @@ -132,7 +132,7 @@
pattern_projection_dim=pattern_projection_dim, max_iter=3)

Y = l(Q, K, V)
@test size(Y) == (out_channel, heads*target_len, batch_size)
@test size(Y) == (out_channel, target_len, batch_size)

g = Zygote.gradient(() -> sum(l(Q, K, V)), Flux.params(l))
@test length(g.grads) == 6
Expand All @@ -143,10 +143,10 @@
stored_pattern_dim=stored_pattern_dim, max_iter=3)

Y = l(Q, nothing, nothing)
@test size(Y) == (out_channel, heads*target_len, batch_size)
@test size(Y) == (out_channel, target_len, batch_size)

g = Zygote.gradient(() -> sum(l(Q, nothing, nothing)), Flux.params(l))
@test length(g.grads) == 20
@test length(g.grads) == 22
end

@testset "HopfieldPooling with multiple updates" begin
Expand All @@ -155,7 +155,7 @@
pattern_projection_dim=pattern_projection_dim, max_iter=3)

Y = l(nothing, K, V)
@test size(Y) == (out_channel, heads*emb_dim, batch_size)
@test size(Y) == (out_channel, emb_dim, batch_size)

g = Zygote.gradient(() -> sum(l(nothing, K, V)), Flux.params(l))
@test length(g.grads) == 8
Expand Down