Skip to content

code for drug (JAK inhibitor) design using machine learning, for thesis of UM Ph.D Pharmaceutical Sciences and Scientific Computing

Notifications You must be signed in to change notification settings

yingzibu/drug_design_JAK

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine learning guided drug discovery: application in Janus Kinase inhibitor design

CoGT only

original github for CoGT

Set up env CoGT, check environment_CoGT.yml

conda remove --name CoGT --all
conda create -n CoGT python=3.9.15
conda activate CoGT
pip install jupyter 

chemBERTa was trained using GPU, check file , others trained using CPU

MTATFP only

original github for MTATFP

Set up env MTATFP

conda create -n MTATFP python=3.9.7
conda activate MTATFP

!pip install pandas
!pip3 install torch  
!pip install rdkit  # conda install -c rdkit rdkit==2018.09.3
!pip install dgllife
!pip install dgl==1.1
!pip install molvs
!pip install matplotlib
!pip install nbconvert[webpdf]

check version

print('conda activate MTATFP, python=3.9.7')
print('paper JAK-MTATFP for JAKi IC50 prediction')
# Python 3.9.7
!python --version 
import torch
print('torch version:', torch.__version__)             # torch version: 2.0.1
import dgl
print('dgl version: ', dgl.__version__)                # dgl version:  1.1
import dgllife
print('dglife version: ', dgllife.__version__)         # dglife version:  0.3.2
import rdkit 
print('rdkit version: ', rdkit.__version__)            # rdkit version:  2023.03.1
import molvs
print('molvs version: ', molvs.__version__)            # molvs version:  0.1.1
import matplotlib
print('matplotlib version: ', matplotlib.__version__)  # matplotlib version: 3.7.1

Set up env CCM (works for CoGT + conditionalVAE + MTATFP)

For cuda version, see check conditionalVAE.ipynb for conditionalVAE only or CoGT_MTATFP_env_cuda.ipynb

For local CPU verions:

You can first create env CoGT based on the instruction above, then clone the envrionment

conda create --name CCM --clone CoGT
conda activate CCM

then install packages used for MTATFP:

!pip install dgllife
!pip install dgl==1.1
!pip install molvs

check version

!python --version 
import torch
print('torch version:', torch.__version__)              
import dgl
print('dgl version: ', dgl.__version__)                 
import dgllife
print('dglife version: ', dgllife.__version__)          
import rdkit 
print('rdkit version: ', rdkit.__version__)            
import molvs
print('molvs version: ', molvs.__version__)            
import matplotlib
print('matplotlib version: ', matplotlib.__version__)   

The output should be

Python 3.9.15
torch version: 1.12.0
dgl version:  1.1.0
dglife version:  0.3.2
rdkit version:  2022.09.5
molvs version:  0.1.1
matplotlib version:  3.7.1

About

code for drug (JAK inhibitor) design using machine learning, for thesis of UM Ph.D Pharmaceutical Sciences and Scientific Computing

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published