Set up env CoGT, check environment_CoGT.yml
conda remove --name CoGT --all
conda create -n CoGT python=3.9.15
conda activate CoGT
pip install jupyter
chemBERTa was trained using GPU, check file , others trained using CPU
conda create -n MTATFP python=3.9.7
conda activate MTATFP
!pip install pandas
!pip3 install torch
!pip install rdkit # conda install -c rdkit rdkit==2018.09.3
!pip install dgllife
!pip install dgl==1.1
!pip install molvs
!pip install matplotlib
!pip install nbconvert[webpdf]
check version
print('conda activate MTATFP, python=3.9.7')
print('paper JAK-MTATFP for JAKi IC50 prediction')
# Python 3.9.7
!python --version
import torch
print('torch version:', torch.__version__) # torch version: 2.0.1
import dgl
print('dgl version: ', dgl.__version__) # dgl version: 1.1
import dgllife
print('dglife version: ', dgllife.__version__) # dglife version: 0.3.2
import rdkit
print('rdkit version: ', rdkit.__version__) # rdkit version: 2023.03.1
import molvs
print('molvs version: ', molvs.__version__) # molvs version: 0.1.1
import matplotlib
print('matplotlib version: ', matplotlib.__version__) # matplotlib version: 3.7.1
For cuda version, see check conditionalVAE.ipynb for conditionalVAE only or CoGT_MTATFP_env_cuda.ipynb
For local CPU verions:
You can first create env CoGT based on the instruction above, then clone the envrionment
conda create --name CCM --clone CoGT
conda activate CCM
then install packages used for MTATFP:
!pip install dgllife
!pip install dgl==1.1
!pip install molvs
check version
!python --version
import torch
print('torch version:', torch.__version__)
import dgl
print('dgl version: ', dgl.__version__)
import dgllife
print('dglife version: ', dgllife.__version__)
import rdkit
print('rdkit version: ', rdkit.__version__)
import molvs
print('molvs version: ', molvs.__version__)
import matplotlib
print('matplotlib version: ', matplotlib.__version__)
The output should be
Python 3.9.15
torch version: 1.12.0
dgl version: 1.1.0
dglife version: 0.3.2
rdkit version: 2022.09.5
molvs version: 0.1.1
matplotlib version: 3.7.1