-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.js
executable file
·214 lines (198 loc) · 6.13 KB
/
server.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
const express = require("express");
const app = express();
const port = process.env.PORT || 4123;
// Load config files
const openaiApiCreds = require("./openaiApiCreds.json");
const {
systemRoleCreateBook,
basePrompt,
imageBasePrompt,
systemRoleCreateImagePrompts,
} = require("./gptconfig.js");
// Middleware
app.use(express.static("public"));
app.use(express.json());
// Route / : Serve public folder
app.get("/", (req, res) => {
res.sendFile("public/index.html", { root: __dirname });
});
// APIs:
// Create a new book.
app.post("/api/newbook", (req, res) => {
const userPrompt = req.body.userPrompt || "";
const myHeaders = new Headers();
myHeaders.append("Content-Type", "application/json");
myHeaders.append("Authorization", `Bearer ${openaiApiCreds.openaiApiKey}`);
var animals = [
// ...and some non-animals...
"golden retriever",
"axolotl",
"moose",
"orca",
"pigeon",
"parrot",
"alien",
"cobra",
"robot",
"bat",
"toaster",
];
var names = [
"Steve",
"Yuri",
"Kim",
"Lee",
"Ken",
"Naomi",
"Maya",
"Maria",
"Anna",
"Sam",
"Alex",
];
const numPages = 4;
var randomAnimal = animals[Math.floor(Math.random() * animals.length)];
var randomName = names[Math.floor(Math.random() * names.length)];
const userPromptCombined =
basePrompt +
` The main character is a ${randomAnimal} named ${randomName}. The story should be ${numPages} pages. ` +
userPrompt;
const raw = JSON.stringify({
model: "gpt-4o", // "gpt-3.5-turbo",
messages: [
{
role: "system",
content: systemRoleCreateBook,
},
{
role: "user",
content: userPromptCombined,
},
],
temperature: 0.5,
frequency_penalty: 0.6,
presence_penalty: 0.3,
max_tokens: 600,
top_p: 0.9,
});
const requestOptions = {
method: "POST",
headers: myHeaders,
body: raw,
redirect: "follow",
};
console.log("Getting Story...");
fetch("https://api.openai.com/v1/chat/completions", requestOptions)
.then((response) => response.json())
.then((jsonResult) => {
// jsonResult = JSON.parse(result);
console.log("jsonResult: ", jsonResult);
if (jsonResult && jsonResult.choices && jsonResult.choices[0]) {
const responseMessage = jsonResult.choices[0].message.content;
console.log(responseMessage);
return res.send(JSON.parse(responseMessage));
} else {
return res.send({ response: "No GPT response data." });
}
})
.catch((error) => console.log("error", error));
});
// Create image prompts for each page of the book.
app.post("/api/imageprompts", (req, res) => {
const pages = req.body.pages || "";
const myHeaders = new Headers();
myHeaders.append("Content-Type", "application/json");
myHeaders.append("Authorization", `Bearer ${openaiApiCreds.openaiApiKey}`);
const pagesJson = `{"pages":${pages}}`;
console.log("pagesJson: ", pagesJson);
const raw = JSON.stringify({
model: "gpt-4o", // "gpt-3.5-turbo",
messages: [
{
role: "system",
content: systemRoleCreateImagePrompts,
},
{
role: "user",
content: pagesJson,
},
],
temperature: 0.5,
frequency_penalty: 0.6,
presence_penalty: 0.3,
max_tokens: 600,
top_p: 0.9,
});
const requestOptions = {
method: "POST",
headers: myHeaders,
body: raw,
redirect: "follow",
};
console.log("Getting DALL-E prompts...");
fetch("https://api.openai.com/v1/chat/completions", requestOptions)
.then((response) => response.json())
.then((jsonResult) => {
// jsonResult = JSON.parse(result);
console.log("jsonResult: ", jsonResult);
if (jsonResult && jsonResult.choices && jsonResult.choices[0].message) {
const responseMessage = jsonResult.choices[0].message.content;
console.log("<><><> imageprompts: ", responseMessage);
return res.send(JSON.parse(responseMessage));
} else {
return res.send({ response: "No GPT response data." });
}
})
.catch((error) => console.log("error", error));
// return res.send(JSON.parse(``));
});
app.post("/api/newpicture", (req, res) => {
const imagePrompt = req.body.imagePrompt || "";
const myHeaders = new Headers();
myHeaders.append("Content-Type", "application/json");
myHeaders.append(
"Authorization",
`Bearer ${openaiApiCreds.openaiDallEApiKey}`
);
const prompt = imageBasePrompt + " Imagine: " + imagePrompt;
const raw = JSON.stringify({
model: "dall-e-2",
size: "256x256",
// model: "dall-e-3",
// size: "1024x1024",
prompt: prompt,
n: 1,
});
const requestOptions = {
method: "POST",
headers: myHeaders,
body: raw,
redirect: "follow",
};
console.log("Getting DALL-E image (", prompt, ")...");
fetch("https://api.openai.com/v1/images/generations", requestOptions)
.then((response) => response.json())
.then((result) => {
console.log("image url: ", result);
return res.status(200).send({ imageUrl: result });
})
.catch((error) => {
console.error(error);
return res.status(500).send("Error: " + error);
});
});
app.listen(port, () => {
console.log(`Server is running on port ${port}`);
});
// NOTES:
// presence_penalty:
// Adjusting this can influence how often the model repeats the same concepts.
// A higher value might help in maintaining creativity without deviating from the required structure.
// frequency_penalty:
// Increasing this slightly can help prevent repetitive responses and
// encourage the model to use a wider range of vocabulary while adhering to instructions.
// top_p:
// This parameter controls the nucleus sampling,
// where top_p = 1 means the model considers all possible tokens for each choice.
// Adjusting this to a slightly lower value (e.g., 0.9) can help focus the model’s responses,
// making them more concise and to the point.