-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
79465d8
commit e702c8c
Showing
1 changed file
with
292 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
-- | ||
-- Copyright (c) 2016, Facebook, Inc. | ||
-- All rights reserved. | ||
-- | ||
-- This source code is licensed under the BSD-style license found in the | ||
-- LICENSE file in the root directory of this source tree. An additional grant | ||
-- of patent rights can be found in the PATENTS file in the same directory. | ||
-- | ||
-- Image transforms for data augmentation and input normalization | ||
-- | ||
|
||
require 'image' | ||
|
||
local M = {} | ||
|
||
function M.Compose(transforms) | ||
return function(input) | ||
for _, transform in ipairs(transforms) do | ||
input = transform(input) | ||
end | ||
return input | ||
end | ||
end | ||
|
||
function M.ColorNormalize(meanstd) | ||
return function(img) | ||
img = img:clone() | ||
for i=1,3 do | ||
img[i]:add(-meanstd.mean[i]) | ||
img[i]:div(meanstd.std[i]) | ||
end | ||
return img | ||
end | ||
end | ||
|
||
-- Scales the smaller edge to size | ||
function M.Scale(size, interpolation) | ||
interpolation = interpolation or 'bicubic' | ||
return function(input) | ||
local w, h = input:size(3), input:size(2) | ||
if (w <= h and w == size) or (h <= w and h == size) then | ||
return input | ||
end | ||
if w < h then | ||
return image.scale(input, size, h/w * size, interpolation) | ||
else | ||
return image.scale(input, w/h * size, size, interpolation) | ||
end | ||
end | ||
end | ||
|
||
-- Crop to centered rectangle | ||
function M.CenterCrop(size) | ||
return function(input) | ||
local w1 = math.ceil((input:size(3) - size)/2) | ||
local h1 = math.ceil((input:size(2) - size)/2) | ||
return image.crop(input, w1, h1, w1 + size, h1 + size) -- center patch | ||
end | ||
end | ||
|
||
-- Random crop form larger image with optional zero padding | ||
function M.RandomCrop(size, padding) | ||
padding = padding or 0 | ||
|
||
return function(input) | ||
if padding > 0 then | ||
local temp = input.new(3, input:size(2) + 2*padding, input:size(3) + 2*padding) | ||
temp:zero() | ||
:narrow(2, padding+1, input:size(2)) | ||
:narrow(3, padding+1, input:size(3)) | ||
:copy(input) | ||
input = temp | ||
end | ||
|
||
local w, h = input:size(3), input:size(2) | ||
if w == size and h == size then | ||
return input | ||
end | ||
|
||
local x1, y1 = torch.random(0, w - size), torch.random(0, h - size) | ||
local out = image.crop(input, x1, y1, x1 + size, y1 + size) | ||
assert(out:size(2) == size and out:size(3) == size, 'wrong crop size') | ||
return out | ||
end | ||
end | ||
|
||
-- Four corner patches and center crop from image and its horizontal reflection | ||
function M.TenCrop(size) | ||
local centerCrop = M.CenterCrop(size) | ||
|
||
return function(input) | ||
local w, h = input:size(3), input:size(2) | ||
|
||
local output = {} | ||
for _, img in ipairs{input, image.hflip(input)} do | ||
table.insert(output, centerCrop(img)) | ||
table.insert(output, image.crop(img, 0, 0, size, size)) | ||
table.insert(output, image.crop(img, w-size, 0, w, size)) | ||
table.insert(output, image.crop(img, 0, h-size, size, h)) | ||
table.insert(output, image.crop(img, w-size, h-size, w, h)) | ||
end | ||
|
||
-- View as mini-batch | ||
for i, img in ipairs(output) do | ||
output[i] = img:view(1, img:size(1), img:size(2), img:size(3)) | ||
end | ||
|
||
return input.cat(output, 1) | ||
end | ||
end | ||
|
||
-- Resized with shorter side randomly sampled from [minSize, maxSize] (ResNet-style) | ||
function M.RandomScale(minSize, maxSize) | ||
return function(input) | ||
local w, h = input:size(3), input:size(2) | ||
|
||
local targetSz = torch.random(minSize, maxSize) | ||
local targetW, targetH = targetSz, targetSz | ||
if w < h then | ||
targetH = torch.round(h / w * targetW) | ||
else | ||
targetW = torch.round(w / h * targetH) | ||
end | ||
|
||
return image.scale(input, targetW, targetH, 'bicubic') | ||
end | ||
end | ||
|
||
-- Random crop with size 8%-100% and aspect ratio 3/4 - 4/3 (Inception-style) | ||
function M.RandomSizedCrop(size) | ||
local scale = M.Scale(size) | ||
local crop = M.CenterCrop(size) | ||
|
||
return function(input) | ||
local attempt = 0 | ||
repeat | ||
local area = input:size(2) * input:size(3) | ||
local targetArea = torch.uniform(0.08, 1.0) * area | ||
|
||
local aspectRatio = torch.uniform(3/4, 4/3) | ||
local w = torch.round(math.sqrt(targetArea * aspectRatio)) | ||
local h = torch.round(math.sqrt(targetArea / aspectRatio)) | ||
|
||
if torch.uniform() < 0.5 then | ||
w, h = h, w | ||
end | ||
|
||
if h <= input:size(2) and w <= input:size(3) then | ||
local y1 = torch.random(0, input:size(2) - h) | ||
local x1 = torch.random(0, input:size(3) - w) | ||
|
||
local out = image.crop(input, x1, y1, x1 + w, y1 + h) | ||
assert(out:size(2) == h and out:size(3) == w, 'wrong crop size') | ||
|
||
return image.scale(out, size, size, 'bicubic') | ||
end | ||
attempt = attempt + 1 | ||
until attempt >= 10 | ||
|
||
-- fallback | ||
return crop(scale(input)) | ||
end | ||
end | ||
|
||
function M.HorizontalFlip(prob) | ||
return function(input) | ||
if torch.uniform() < prob then | ||
input = image.hflip(input) | ||
end | ||
return input | ||
end | ||
end | ||
|
||
function M.Rotation(deg) | ||
return function(input) | ||
if deg ~= 0 then | ||
input = image.rotate(input, (torch.uniform() - 0.5) * deg * math.pi / 180, 'bilinear') | ||
end | ||
return input | ||
end | ||
end | ||
|
||
-- Lighting noise (AlexNet-style PCA-based noise) | ||
function M.Lighting(alphastd, eigval, eigvec) | ||
return function(input) | ||
if alphastd == 0 then | ||
return input | ||
end | ||
|
||
local alpha = torch.Tensor(3):normal(0, alphastd) | ||
local rgb = eigvec:clone() | ||
:cmul(alpha:view(1, 3):expand(3, 3)) | ||
:cmul(eigval:view(1, 3):expand(3, 3)) | ||
:sum(2) | ||
:squeeze() | ||
|
||
input = input:clone() | ||
for i=1,3 do | ||
input[i]:add(rgb[i]) | ||
end | ||
return input | ||
end | ||
end | ||
|
||
local function blend(img1, img2, alpha) | ||
return img1:mul(alpha):add(1 - alpha, img2) | ||
end | ||
|
||
local function grayscale(dst, img) | ||
dst:resizeAs(img) | ||
dst[1]:zero() | ||
dst[1]:add(0.299, img[1]):add(0.587, img[2]):add(0.114, img[3]) | ||
dst[2]:copy(dst[1]) | ||
dst[3]:copy(dst[1]) | ||
return dst | ||
end | ||
|
||
function M.Saturation(var) | ||
local gs | ||
|
||
return function(input) | ||
gs = gs or input.new() | ||
grayscale(gs, input) | ||
|
||
local alpha = 1.0 + torch.uniform(-var, var) | ||
blend(input, gs, alpha) | ||
return input | ||
end | ||
end | ||
|
||
function M.Brightness(var) | ||
local gs | ||
|
||
return function(input) | ||
gs = gs or input.new() | ||
gs:resizeAs(input):zero() | ||
|
||
local alpha = 1.0 + torch.uniform(-var, var) | ||
blend(input, gs, alpha) | ||
return input | ||
end | ||
end | ||
|
||
function M.Contrast(var) | ||
local gs | ||
|
||
return function(input) | ||
gs = gs or input.new() | ||
grayscale(gs, input) | ||
gs:fill(gs[1]:mean()) | ||
|
||
local alpha = 1.0 + torch.uniform(-var, var) | ||
blend(input, gs, alpha) | ||
return input | ||
end | ||
end | ||
|
||
function M.RandomOrder(ts) | ||
return function(input) | ||
local img = input.img or input | ||
local order = torch.randperm(#ts) | ||
for i=1,#ts do | ||
img = ts[order[i]](img) | ||
end | ||
return img | ||
end | ||
end | ||
|
||
function M.ColorJitter(opt) | ||
local brightness = opt.brightness or 0 | ||
local contrast = opt.contrast or 0 | ||
local saturation = opt.saturation or 0 | ||
|
||
local ts = {} | ||
if brightness ~= 0 then | ||
table.insert(ts, M.Brightness(brightness)) | ||
end | ||
if contrast ~= 0 then | ||
table.insert(ts, M.Contrast(contrast)) | ||
end | ||
if saturation ~= 0 then | ||
table.insert(ts, M.Saturation(saturation)) | ||
end | ||
|
||
if #ts == 0 then | ||
return function(input) return input end | ||
end | ||
|
||
return M.RandomOrder(ts) | ||
end | ||
|
||
return M |