Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 24 additions & 21 deletions vllm/config/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2651,24 +2651,46 @@ class PoolerConfig:
## for embeddings models
normalize: Optional[bool] = None
"""
Whether to normalize the embeddings outputs.
Whether to normalize the embeddings outputs. Defaults to True.
"""
dimensions: Optional[int] = None
"""
Reduce the dimensions of embeddings if model
support matryoshka representation.
support matryoshka representation. Defaults to None.
"""
enable_chunked_processing: Optional[bool] = None
"""
Whether to enable chunked processing for long inputs that exceed the model's
maximum position embeddings. When enabled, long inputs will be split into
chunks, processed separately, and then aggregated using weighted averaging.
This allows embedding models to handle arbitrarily long text without CUDA
errors. Defaults to False.
"""
max_embed_len: Optional[int] = None
"""
Maximum input length allowed for embedding generation. When set, allows
inputs longer than max_embed_len to be accepted for embedding models.
When an input exceeds max_embed_len, it will be handled according to
the original max_model_len validation logic.
Defaults to None (i.e. set to max_model_len).
"""

## for classification models
activation: Optional[bool] = None
"""
Whether to apply activation function to the classification outputs.
Defaults to True.
"""
logit_bias: Optional[float] = None
"""
If provided, apply classification logit biases. Defaults to None.
"""

## for reward models
softmax: Optional[bool] = None
"""
Whether to apply softmax to the reward outputs.
Defaults to True.
"""
step_tag_id: Optional[int] = None
"""
Expand All @@ -2683,25 +2705,6 @@ class PoolerConfig:
``math-shepherd-mistral-7b-prm`` model.
"""

enable_chunked_processing: Optional[bool] = None
"""
Whether to enable chunked processing for long inputs that exceed the model's
maximum position embeddings. When enabled, long inputs will be split into
chunks, processed separately, and then aggregated using weighted averaging.
This allows embedding models to handle arbitrarily long text without CUDA
errors. Defaults to False.
"""

max_embed_len: Optional[int] = None
"""
Maximum input length allowed for embedding generation. When set, allows
inputs longer than max_embed_len to be accepted for embedding models.
This parameter enables accepting long inputs without requiring
VLLM_ALLOW_LONG_MAX_MODEL_LEN environment variable. When an input exceeds
max_embed_len, it will be handled according to the original max_model_len
validation logic. Defaults to None (i.e. set to max_model_len).
"""

def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
Expand Down
8 changes: 8 additions & 0 deletions vllm/model_executor/layers/pooler.py
Original file line number Diff line number Diff line change
Expand Up @@ -633,9 +633,14 @@ def __init__(
) -> None:
super().__init__()

from vllm.config import get_current_vllm_config
vllm_config = get_current_vllm_config()

self.pooling = pooling
self.classifier = classifier
self.act_fn = act_fn or PoolerClassify()
self.logit_bias: Optional[
float] = vllm_config.model_config.pooler_config.logit_bias

def get_supported_tasks(self) -> Set[PoolingTask]:
return {"classify", "score"}
Expand All @@ -654,6 +659,9 @@ def forward(
pooled_data = self.classifier(pooled_data)
# pooled_data shape: [batchsize, num_labels]

if self.logit_bias is not None:
pooled_data -= self.logit_bias

pooling_params = get_pooling_params(pooling_metadata)
flags = [p.activation for p in pooling_params]

Expand Down
4 changes: 3 additions & 1 deletion vllm/model_executor/models/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,8 +210,10 @@ class JinaVLForSequenceClassificationConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
config = vllm_config.model_config.hf_config

config.num_labels = 1
pooler_config = vllm_config.model_config.pooler_config
if pooler_config.logit_bias is None:
pooler_config.logit_bias = 2.65


class SnowflakeGteNewModelConfig(VerifyAndUpdateConfig):
Expand Down
11 changes: 3 additions & 8 deletions vllm/model_executor/models/jina_vl.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,17 +92,14 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None

# logit bias for sigmoid normalization
self.LOGIT_BIAS = 2.65

self.score = JinaVLScorer(config)
self.pooler = DispatchPooler({
"encode":
Pooler.for_encode(pooler_config),
"classify":
Pooler.for_classify(pooler_config, classifier=None),
Pooler.for_classify(pooler_config, classifier=self.score),
"score":
Pooler.for_classify(pooler_config, classifier=None),
Pooler.for_classify(pooler_config, classifier=self.score),
})

@classmethod
Expand Down Expand Up @@ -137,9 +134,7 @@ def forward(
inputs_embeds=inputs_embeds,
**kwargs,
)

logits = self.score(hidden_states) - self.LOGIT_BIAS
return logits
return hidden_states

def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(self)
Expand Down