Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions PPO.html

Large diffs are not rendered by default.

29 changes: 25 additions & 4 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,17 @@
from replay_memory import Memory
from running_state import ZFilter

import plotly
import plotly.graph_objs as go
from plotly.graph_objs import Layout,Scatter

PI = torch.DoubleTensor([3.1415926])

def normal_log_density(x, mean, log_std, std):
var = std.pow(2)
log_density = -(x - mean).pow(2) / (2 * var) - 0.5 * torch.log(2 * Variable(PI)) - log_std
return log_density.sum(1)

def select_action(state, policy_net):
torch.set_default_tensor_type('torch.DoubleTensor')
PI = torch.DoubleTensor([3.1415926])
Expand Down Expand Up @@ -128,7 +139,7 @@ def main(gamma=0.995, env_name='Walker2d-v2', tau=0.97, seed=543, number_of_batc
running_state = ZFilter((num_inputs,), clip=5)
running_reward = ZFilter((1,), demean=False, clip=10)
episode_lengths = []

plot_rew = []
for i_episode in range(number_of_batches):
memory = Memory()

Expand Down Expand Up @@ -166,11 +177,21 @@ def main(gamma=0.995, env_name='Walker2d-v2', tau=0.97, seed=543, number_of_batc

reward_batch /= num_episodes
batch = memory.sample()
plot_rew.append(reward_batch)
update_params(batch, policy_net, value_net, gamma, opt_policy, opt_value)

if i_episode % args.log_interval == 0:
print('Episode {}\tLast reward: {}\tAverage reward {:.2f}'.format(
i_episode, reward_sum, reward_batch))

plot_epi = []
for i in range (number_of_batches):
plot_epi.append(i)
trace = go.Scatter( x = plot_epi, y = plot_rew)
layout = go.Layout(title='PPO',xaxis=dict(title='Episodes', titlefont=dict(family='Courier New, monospace',size=18,color='#7f7f7f')),
yaxis=dict(title='Average Reward', titlefont=dict(family='Courier New, monospace',size=18,color='#7f7f7f')))

plotly.offline.plot({"data": [trace], "layout": layout},filename='PPO.html',image='jpeg')

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch actor-critic example')
Expand All @@ -188,11 +209,11 @@ def main(gamma=0.995, env_name='Walker2d-v2', tau=0.97, seed=543, number_of_batc
# help='damping (default: 1e-1)')
parser.add_argument('--seed', type=int, default=543, metavar='N',
help='random seed (default: 1)')
parser.add_argument('--number-of-batches', type=int, default=500, metavar='N',
parser.add_argument('--number-of-batches', type=int, default=50, metavar='N',
help='number of batches (default: 500)')
parser.add_argument('--batch-size', type=int, default=5000, metavar='N',
parser.add_argument('--batch-size', type=int, default=20, metavar='N',
help='batch size (default: 5000)')
parser.add_argument('--maximum_steps', type=int, default=10000, metavar='N',
parser.add_argument('--maximum_steps', type=int, default=10, metavar='N',
help='maximum number of steps (default: 10000)')
parser.add_argument('--render', action='store_true',
help='render the environment')
Expand Down