Skip to content

Commit

Permalink
Most (all?) of Section 2 is in the blueprint now
Browse files Browse the repository at this point in the history
  • Loading branch information
urkud committed Dec 29, 2024
1 parent 5f38b3e commit 7964324
Showing 1 changed file with 184 additions and 29 deletions.
213 changes: 184 additions & 29 deletions blueprint/src/content.tex
Original file line number Diff line number Diff line change
Expand Up @@ -482,6 +482,7 @@ \section{Inverse function theorem}%

\begin{theorem}%
\label{thm:cdh-at-implicit-dichotomy}
\uses{def:cdh-at}
Let \(E\) and \(F\) be finite dimensional real normed spaces.
Consider a set \(s \subset E \times F\) and \((a, b) \in s\).
Then
Expand All @@ -498,6 +499,11 @@ \section{Inverse function theorem}%
\end{itemize}
\end{theorem}

\begin{proof}
\uses{thm:cdh-at-implicit-ker}
This theorem is a special case of \autoref{thm:cdh-at-implicit-ker} for \(G=\mathbb R\).
\end{proof}

\chapter{Local estimates}%
\label{cha:local-estimates}

Expand Down Expand Up @@ -534,7 +540,7 @@ \section{Moreira charts}%
\item each \(\psi_{i}(x, y)\) is expanding in \(y\) on \(V_{i+1}\) for each \(x \in B_{i + 1}\);
\item for any map \(f\colon E\times \mathbb R^{d_{i}} \to \mathbb R\)
that is \(C^{k-i+(\alpha)}\) on \((t_{i}, B_{i}\times V_{i})\) and vanishes on \(t_{i}\),
the differential \(D(f \circ \psi_{i})\) vanishes on \(t_{i+1}\).
the differential \(D_{2}(f \circ \psi_{i})\) vanishes on \(t_{i+1}\).
\end{itemize}
\end{definition}

Expand Down Expand Up @@ -594,9 +600,8 @@ \section{Estimates on \texorpdfstring{\(C^{1+(\alpha)}\)}{C\^(1+α)} functions}
\end{remark}

\begin{corollary}%
\label{cor:cdh-at-sub-affine-le-of-meas-fderiv}
Let \(E\) be a finite dimensional real normed space.
Let \(F\) be a real normed space.
\label{cor:cdh-at-sub-le-of-meas-fderiv}
Let \(E\) and \(F\) be a real normed spaces.
Consider a function \(f\colon E\to F\), points \(a, b \in E\),
and numbers \(C\ge 0\), \(\delta\ge 0\), \(r \ge 0\) such that
\begin{itemize}
Expand All @@ -615,44 +620,194 @@ \section{Estimates on \texorpdfstring{\(C^{1+(\alpha)}\)}{C\^(1+α)} functions}
\end{proof}

\begin{corollary}%
\label{cor:sub-isBigO-rpow-of-fderiv}

\label{cor:cdh-at-isLittleO-of-density}
\uses{def:cdh-at}
Let \(f\colon E \to F\) be a function from a finite dimensional real normed space to a real normed space.
Consider a set \(s\) and a point \(a\) such that
\begin{itemize}
\item \(f\) is \(C^{1+(\alpha)}\) at \(a\);
\item \(Df(x)=0\) for each \(x\in s\);
\item \(a\in s\) is a Lebesgue density point of \(s\).
\end{itemize}
Then \(f(x)-f(a)=o\left(\left\|x - a\right\|^{1+\alpha}\right)\) as \(x\to a\).
\end{corollary}

\begin{lemma}%
\label{lem:cdh-at-sub-affine-isBigO}
\uses{def:cdh-at}
If \(f\colon E \to F\) is \(C^{1+(\alpha)}\) at \(a\),
then \(f(x) - f(a) - Df(a)(x - a) = O\left(\|x - a\|^{1 + \alpha}\right)\) as \(x \to a\).
\end{lemma}
Here \(Df(a)(x - a)\) means differential of \(f\) at \(a\) applied to \(x - a\).
\begin{proof}
\uses{cor:cdh-at-sub-le-of-meas-fderiv,cor:meas-ball-gt-pos}
Take \(C\) such that \(\|Df(x)\|\le C\|x - a\|^{\alpha}\) for \(x\) sufficiently close to \(a\).
It suffices to show that for every \(\epsilon > 0\),
we have \(\|f(x) - f(a)\| \le 2C\epsilon\|x - a\|^{1+\alpha}\)
for all \(x\) sufficiently close to \(a\).

Choose \(\delta > 0\) such that for any set \(T\) of measure at least \((1-\delta)\mu(B_{1})\) in a unit ball,
for each point \(x\) on the unit sphere there exists another point \(y\) on the sphere
such that \(\|x - y\| \le \epsilon\)
and the measure of \(t\in [0, 1]\) such that \(x+t(y - x)\in T\) is at least \(1 - \epsilon\).
Existence of \(\delta > 0\) with these properties follows from \autoref{cor:meas-ball-gt-pos}

Then choose \(R>0\) such that
\(s\) occupies at least \(1-\delta\) fraction of the volume of a ball \(B_{r}(a)\) for all \(0 < r < R\)
and the estimate \(\|Df(x)\|\le C\|x - a\|^{\alpha}\) holds on \(B_{R}(a)\).
Take \(x\in B_{R}(a)\).
Find \(y\) such that \(\|y - a\| = \|x - a\|\), \(\|y - x\| \le \epsilon\|x - a\|\),
and the measure of \(t\in [0, 1]\) such that \(a + t(y - a)\in s\) is at least \(1 - \epsilon\).

Then \(\|f(x) - f(y)\| \le C\|x - a\|^{\alpha}\|x - y\| \le C\epsilon\|x - a\|^{\alpha+1}\)
due to the Mean Value Theorem.
On the other hand, \autoref{cor:cdh-at-sub-le-of-meas-fderiv} implies that
\(\|f(y) - f(a)\| \le C\epsilon\|y - a\|^{\alpha+1}\).

Finally, the triangle inequality implies that \(\|f(x) - f(a)\| \le 2C\epsilon\|x - a\|^{\alpha+1}\).
\end{proof}

\begin{corollary}%
\label{cor:cdh-at-sub-le}
Let \(f\colon E\to F\) be a function between real normed spaces.
Suppose that \(f\) is differentiable in a neighborhood of \(a \in E\)
and \(\|Df(x)\|\le C\|x - a\|^{r}\) on a convex set \(s \ni a\).
Then \(\|f(x) - f(a)\|\le C\|x - a\|^{r + 1}\) for \(x\in s\).
\end{corollary}

\begin{proof}
We have
\begin{align*}
f(x) - f(a) - Df(a)(x - a) &= \int_{0}^{1}\left(Df(a + t(x - a)) - Df(a)\right)(x - a)\,dt\\
&= O\left(\int_{0}^{1}t^{\alpha}\|x - a\|^{1+\alpha}\,dt\right)\\
&= O\left(\|x - a\|^{1 + \alpha}\right).
\end{align*}
\uses{cor:cdh-at-sub-le-of-meas-fderiv}
This statement immediately follows from \autoref{cor:cdh-at-sub-le-of-meas-fderiv} for \(\delta = 1\).
\end{proof}

\begin{remark}
An alternative proof of \autoref{lem:cdh-at-sub-affine-isBigO}
applies \autoref{lem:cdh-at-sub-affine-le-of-meas} to \(\delta=1\).
\end{remark}
\begin{corollary}%
\label{cor:sub-isBigO-rpow-of-fderiv}
If \(f\colon E \to F\) is \(C^{1}\) at \(a \in E\) and \(\|Df(x)\|=O\left(\left\|x - a\right\|^{r}\right)\) as \(x\to a\), where \(r\ge 0\),
then \(\|x - a\| = O\left(\left\|x - a\right\|^{r + 1}\right)\) as \(x\to a\).
\end{corollary}

\begin{proof}
\uses{cor:cdh-at-sub-le}
The statement immediately follows from \autoref{cor:cdh-at-sub-le}.
\end{proof}

\begin{corollary}%
\label{cor:cdh-at-sub-isBigO}
\uses{def:cdh-at}
If \(f\colon E \to F\) is \(C^{1+(\alpha)}\) at \(a\) and \(Df(a) = 0\),
then \(f(x) - f(a) = O\left(\|x - a\|^{1 + \alpha}\right)\) as \(x \to a\).
\label{cor:sub-isLittleO-rpow-of-fderiv}
If \(f\colon E \to F\) is \(C^{1}\) at \(a \in E\) and \(\|Df(x)\|=o\left(\left\|x - a\right\|^{r}\right)\) as \(x\to a\), where \(r\ge 0\),
then \(\|x - a\| = o\left(\left\|x - a\right\|^{r + 1}\right)\) as \(x\to a\).
\end{corollary}

\begin{proof}
\uses{lem:cdh-at-sub-affine-isBigO}
Immediately follows from \autoref{lem:cdh-at-sub-affine-isBigO} and \(Df(a) = 0\).
\uses{cor:cdh-at-sub-le}
The statement immediately follows from \autoref{cor:cdh-at-sub-le}.
\end{proof}

\begin{theorem}%
\label{thm:moreira-chart-isBigO}
\uses{def:moreira-chart}
Consider \(s\subset U\subset E\times\mathbb R^{n}\).
Consider a Moreira chart of \((s, U)\) of smoothness \(C^{k+(\alpha)}\) of depth \(k\).
Let \(f\colon E\times\mathbb R^{n}\to F\) be a function
such that \(f\) is \(C^{k+(\alpha)}\) on \((s, U)\).
Then for any \((a, b)\in t_{k}\), we have
\(f(a, \Psi_{k}(a, y)) - f(a, \Psi_{k}(a, b))=O\left(\|y - b\|^{k + \alpha}\right)\) as \(y\to b\).
\end{theorem}

\begin{proof}
\uses{cor:sub-isBigO-rpow-of-fderiv}
We prove it by induction on \(k\).
The induction base \(k = 1\) follows from the definition of a \(C^{1+(\alpha)}\) function,
and the induction step follows from \autoref{cor:sub-isLittleO-rpow-of-fderiv}
\end{proof}

\begin{theorem}%
\label{thm:moreira-chart-isLittleO}
\uses{def:moreira-chart}
Consider \(s\subset U\subset E\times\mathbb R^{n}\).
Consider a Moreira chart of \((s, U)\) of smoothness \(C^{k+(\alpha)}\) of depth \(k\), \(k > 0\).
Let \(f\colon E\times\mathbb R^{n}\to F\) be a function
such that \(f\) is \(C^{k+(\alpha)}\) on \((s, U)\).
Consider \((a, b)\in t_{k}\) such that \(b\) is a Lebesgue density point of the closure of the set \(\{y\mid (a, y)\in t_{k}\}\).
Then \(f(a, \Psi_{k}(a, y)) - f(a, \Psi_{k}(a, b))=o\left(\|y - b\|^{k + \alpha}\right)\) as \(y\to b\).
\end{theorem}

\begin{proof}
\uses{cor:cdh-at-isLittleO-of-density,cor:sub-isLittleO-rpow-of-fderiv}
We prove it by induction on \(k\).
The induction base \(k = 1\) follows from \autoref{cor:cdh-at-isLittleO-of-density}
while the induction step follows from \autoref{cor:sub-isLittleO-rpow-of-fderiv}
\end{proof}

\section{Moreira covering}%
\label{sec:moreira-covering}

The following definition does not appear in the original paper,
but it helps to expose parts of the proof of Theorem 2.1 from the paper.
\begin{definition}%
\label{def:moreira-covering}
\uses{def:moreira-chart, def:moreira-chart-map}
Let \(E\) be a real normed space, let \(n\) be a natural number.
Consider a set \(s\subset E \times \mathbb R^{n}\) and its open neighborhood \(U\supset s\).
A \emph{Moreira covering} of \((s, U)\) of depth \(l\)
is a countable collection of Moreira charts of depth \(l\)
such that the union of the sets \(((x, y) \mapsto (x, \Psi_{l}(x, y)))(t_{l})\) is the whole \(s\).
\end{definition}

\begin{lemma}%
\label{lem:moreira-covering-zero}
\uses{def:moreira-covering}
If \(E\) is a real normed space with second-countable topology and \(n\) is a natural number,
then every pair \((s, U)\) in \(E\times\mathbb R^{n}\)
admits a Moreira covering of depth \(0\).
\end{lemma}

\begin{proof}
This lemma follows immediately from the definitions
and the fact that a second countaable topological space is hereditarily Lindelof.
\end{proof}

\begin{lemma}%
\label{lem:moreira-covering-one}
\uses{def:moreira-covering}
If \(E\) is a real normed space with second-countable topology and \(n\) is a natural number,
then every pair \((s, U)\) in \(E\times\mathbb R^{n}\)
admits a Moreira covering of depth \(1\).
\end{lemma}

\begin{proof}
\uses{thm:cdh-at-implicit-dichotomy}
The proof is by induction on \(n\).
Let \(t \subset s\) be the set of points \((x, y)\in s\)
such that there exists a function \(f\colon E\times\mathbb R^{n}\to \mathbb R\)
such that \(f\) is \(C^{k+(\alpha)}\) on \((s, U)\), \(\left.f\right|_{s}=0\), and \(D_{2}f\ne 0\).

For each \((a, b)\in s\), we use \autoref{thm:cdh-at-implicit-dichotomy}
to find a function \(\psi\colon E\times\mathbb R^{n - 1}\to \mathbb R^{n}\),
open balls \(B\subset E\) and \(V\subset\mathbb R^{n - 1}\) with centers \(x\) and \(0\),
and a set \(u\subset E\times\mathbb R^{n - 1}\) such that
\begin{itemize}
\item \(\psi\) is \(C^{k+(\alpha)}\) on \((u, B\times V)\);
\item \(((x, y) \mapsto (x, \psi(x, y)))(u)\) is a neighborhood of \((a, b)\) within \(s\);
\item \(\psi(x, y)\) is expanding in \(y\) on \(V\) for each \(x\in B\).
\end{itemize}
The latter condition can be satisfied by composing \(\psi\) with a homoethety.
Then we apply the inductive assumption to \((u, B\times V)\) and compose each chart with \(\psi\).

For each \((a, b)\in s \setminus t\), we choose open balls \(B\) and \(V\) with centers \(a\) and \(b\)
such that \(B\times V\subset U\), then take \(\psi(x, y) = y\) and \((s \setminus t)\cap (B\times V)\)
as a chart and its domain, respectively.

Charts of the first type cover \(t\) and charts of the second type cover \(s \setminus t\),
thus their union covers the whole \(s\).
\end{proof}

\begin{theorem}%
\label{thm:moreira-covering-exists}
\uses{def:moreira-covering}
In the assumptions of the previous lemma, \((s, U)\) admits a Moreira covering of any depth \(l \le k\).
\end{theorem}

\begin{proof}
\uses{lem:moreira-covering-zero,lem:moreira-covering-one}
The proof is by induction on \(l\).
The induction base is given by \autoref{lem:moreira-covering-zero}.
For the induction step, use \autoref{lem:moreira-covering-one} to get a Moreira covering of depth \(1\),
then take a Moreira covering of depth \(l\) for each \((t, B\times V)\) in this covering,
then compose them.
\end{proof}

%%% Local Variables:
%%% mode: latex
Expand Down

0 comments on commit 7964324

Please sign in to comment.