Skip to content

Commit

Permalink
Addition of properties pullback_wedge and ederiv_wedge
Browse files Browse the repository at this point in the history
  • Loading branch information
MetalCreator666 committed Jan 21, 2025
1 parent 8e56b09 commit dfdbddb
Show file tree
Hide file tree
Showing 2 changed files with 23 additions and 0 deletions.
18 changes: 18 additions & 0 deletions DeRhamCohomology/DifferentialForm.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ import Mathlib.Analysis.Calculus.FDeriv.Symmetric
import DeRhamCohomology.ContinuousAlternatingMap.Curry
import DeRhamCohomology.ContinuousAlternatingMap.FDeriv
import DeRhamCohomology.ContinuousAlternatingMap.Wedge
import DeRhamCohomology.Equiv.Fin

noncomputable section

Expand Down Expand Up @@ -278,8 +279,25 @@ theorem wedge_antisymm (ω : Ω^m⟮E, ℝ⟯) (τ : Ω^n⟮E, ℝ⟯) :

variable {M : Type*} [NormedAddCommGroup M] [NormedSpace ℝ M]

/- Corollary of `wedge_antisymm` saying that a wedge of a m-form with itself is
zero if m is odd. -/
theorem wedge_self_odd_zero (ω : Ω^m⟮E, ℝ⟯) (m_odd : Odd m) :
(ω ∧ ω) = 0 := by
ext1 x
rw[wedge_product_mul]
exact ContinuousAlternatingMap.wedge_self_odd_zero (ω x) m_odd

/- Pullback commutes with taking the wedge product -/
theorem pullback_wedge (f : G → E) (ω₁ : Ω^m⟮E, F⟯) (ω₂ : Ω^n⟮E, F'⟯)
(f' : F →L[ℝ] F' →L[ℝ] F'') : pullback f (ω₁ ∧[f'] ω₂) = pullback f ω₁ ∧[f'] pullback f ω₂ := by
ext x y
rw[wedge_product_def, pullback, wedge_product_def, pullback, pullback, compContinuousLinearMap_apply]
/- Next step is to write split y over the wedge product using definitions wedge product and then rebuild
Need to be able to apply `uncurrySum.summand` for this! -/
sorry

/- The graded Leibniz rule for the exterior derivative of the wedge product -/
theorem ederiv_wedge (ω : Ω^m⟮E, F⟯) (τ : Ω^n⟮E, F'⟯) (f : F →L[ℝ] F' →L[ℝ] F'') :
ederiv (ω ∧[f] τ) = (domDomCongr finAddFlipAssoc (ederiv ω ∧[f] τ))
+ ((-1 : ℝ)^m) • ((ω ∧[f] ederiv τ)) := by
sorry
5 changes: 5 additions & 0 deletions DeRhamCohomology/Equiv/Fin.lean
Original file line number Diff line number Diff line change
Expand Up @@ -16,3 +16,8 @@ variable {m n o: ℕ}
def finAssoc {m n p : ℕ} : Fin (m + n + p) ≃ Fin (m + (n + p)) := by
refine finCongr ?eq
exact Nat.add_assoc m n p

def finAddFlipAssoc {m n p : ℕ} : Fin (m + p + n) ≃ Fin (m + (n + p)) := by
refine finCongr ?eq
rw [Nat.add_right_comm]
exact Nat.add_assoc m n p

0 comments on commit dfdbddb

Please sign in to comment.