A library for making RepE control vectors
-
Updated
Jan 8, 2025 - Jupyter Notebook
A library for making RepE control vectors
[UNMAINTAINED] 非监督特征学习与深度学习中文教程,该版本翻译自新版 UFLDL Tutorial 。建议新人们去学习斯坦福的CS231n课程,该门课程在网易云课堂上也有一个配有中文字幕的版本。
For OpenMOSS Mechanistic Interpretability Team's Sparse Autoencoder (SAE) research.
Finding Direction of arrival (DOA) of small UAVs using Sparse Denoising Autoencoders and Deep Neural Networks.
[ICLR 2025] Monet: Mixture of Monosemantic Experts for Transformers
Medical Imaging, Denoising Autoencoder, Sparse Denoising Autoencoder (SDAE) End-to-end and Layer Wise Pretraining
Code for the paper: Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery. ECCV 2024.
Sparse Autoencoders using FashionMNIST dataset
Hyperspectral Band Selection using Self-Representation Learning with Sparse 1D-Operational Autoencoder (SRL-SOA)
Hypothesizing interpretable relationships in text datasets using sparse autoencoders.
Providing the answer to "How to do patching on all available SAEs on GPT-2?". It is an official repository of the implementation of the paper "Evaluating Open-Source Sparse Autoencoders on Disentangling Factual Knowledge in GPT-2 Small"
A tiny easily hackable implementation of a feature dashboard.
Diagnóstico de falla de rodamiento utilizando descomposición modal empírica y deep learning
Use evolution with sparse autoencoders
Implementation and analysis of Sparse Autoencoders for neural network interpretability research. Features interactive visualization dashboard and W&B integration.
Code for the ETH MSc Thesis: Sparse Autoencoders vs. Activation Difference for Language Model Steering
A framework for conducting interpretability research and for developing an LLM from a synthetic dataset.
CE-Bench: A Contrastive Evaluation Benchmark of LLM Interpretability with Sparse Autoencoders
My AI interpretability research journey
Folder contains implementation of Multi layer feed forward networks, Autoencoders, Sparse Autoencoders and many..
Add a description, image, and links to the sparse-autoencoders topic page so that developers can more easily learn about it.
To associate your repository with the sparse-autoencoders topic, visit your repo's landing page and select "manage topics."