Demonstrates the use of ML for Anomaly Detection for Credit Card Transactions: Identifying Fraudulent Activity using Imbalanced Data
-
Updated
Jan 7, 2025 - Jupyter Notebook
Demonstrates the use of ML for Anomaly Detection for Credit Card Transactions: Identifying Fraudulent Activity using Imbalanced Data
Machine Learning aplicado al mantenimiento predictivo. Se realizaron 2 modelos: 1 por medio de clasificación binaria que predice si una máquina fresadora estará en riesgo de fallar o no, y el 2 modelo a través de clasificación multiclase que predecirá el modo de falla
A binary classification task performed with machine learning in Python. The dataset's target distribution is heavily imbalanced. The model performance was evaluated with F1 scores.
Add a description, image, and links to the near-miss topic page so that developers can more easily learn about it.
To associate your repository with the near-miss topic, visit your repo's landing page and select "manage topics."