|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "d12cb9dc", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Accession: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133344" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": 1, |
| 14 | + "id": "ca04f335-6926-4764-82ec-374d7c6f94b4", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "import gzip\n", |
| 19 | + "import os\n", |
| 20 | + "import re\n", |
| 21 | + "\n", |
| 22 | + "import pandas as pd\n", |
| 23 | + "import numpy as np\n", |
| 24 | + "from anndata import AnnData\n", |
| 25 | + "from scipy.io import mmread\n", |
| 26 | + "from scipy.sparse import coo_matrix\n", |
| 27 | + "\n", |
| 28 | + "from utils import download_binary_file\n", |
| 29 | + "\n", |
| 30 | + "# Gene program lists obtained by cross-referencing the heatmap here\n", |
| 31 | + "# https://github.com/thomasmaxwellnorman/Perturbseq_GI/blob/master/GI_optimal_umap.ipynb\n", |
| 32 | + "# with Figure 2b in Norman 2019\n", |
| 33 | + "G1_CYCLE = [\n", |
| 34 | + " \"CDKN1C+CDKN1B\",\n", |
| 35 | + " \"CDKN1B+ctrl\",\n", |
| 36 | + " \"CDKN1B+CDKN1A\",\n", |
| 37 | + " \"CDKN1C+ctrl\",\n", |
| 38 | + " \"ctrl+CDKN1A\",\n", |
| 39 | + " \"CDKN1C+CDKN1A\",\n", |
| 40 | + " \"CDKN1A+ctrl\",\n", |
| 41 | + "]\n", |
| 42 | + "\n", |
| 43 | + "ERYTHROID = [\n", |
| 44 | + " \"BPGM+SAMD1\",\n", |
| 45 | + " \"ATL1+ctrl\",\n", |
| 46 | + " \"UBASH3B+ZBTB25\",\n", |
| 47 | + " \"PTPN12+PTPN9\",\n", |
| 48 | + " \"PTPN12+UBASH3A\",\n", |
| 49 | + " \"CBL+CNN1\",\n", |
| 50 | + " \"UBASH3B+CNN1\",\n", |
| 51 | + " \"CBL+UBASH3B\",\n", |
| 52 | + " \"UBASH3B+PTPN9\",\n", |
| 53 | + " \"PTPN1+ctrl\",\n", |
| 54 | + " \"CBL+PTPN9\",\n", |
| 55 | + " \"CNN1+UBASH3A\",\n", |
| 56 | + " \"CBL+PTPN12\",\n", |
| 57 | + " \"PTPN12+ZBTB25\",\n", |
| 58 | + " \"UBASH3B+PTPN12\",\n", |
| 59 | + " \"SAMD1+PTPN12\",\n", |
| 60 | + " \"SAMD1+UBASH3B\",\n", |
| 61 | + " \"UBASH3B+UBASH3A\",\n", |
| 62 | + "]\n", |
| 63 | + "\n", |
| 64 | + "PIONEER_FACTORS = [\n", |
| 65 | + " \"ZBTB10+SNAI1\",\n", |
| 66 | + " \"FOXL2+MEIS1\",\n", |
| 67 | + " \"POU3F2+CBFA2T3\",\n", |
| 68 | + " \"DUSP9+SNAI1\",\n", |
| 69 | + " \"FOXA3+FOXA1\",\n", |
| 70 | + " \"FOXA3+ctrl\",\n", |
| 71 | + " \"LYL1+IER5L\",\n", |
| 72 | + " \"FOXA1+FOXF1\",\n", |
| 73 | + " \"FOXF1+HOXB9\",\n", |
| 74 | + " \"FOXA1+HOXB9\",\n", |
| 75 | + " \"FOXA3+HOXB9\",\n", |
| 76 | + " \"FOXA3+FOXA1\",\n", |
| 77 | + " \"FOXA3+FOXL2\",\n", |
| 78 | + " \"POU3F2+FOXL2\",\n", |
| 79 | + " \"FOXF1+FOXL2\",\n", |
| 80 | + " \"FOXA1+FOXL2\",\n", |
| 81 | + " \"HOXA13+ctrl\",\n", |
| 82 | + " \"ctrl+HOXC13\",\n", |
| 83 | + " \"HOXC13+ctrl\",\n", |
| 84 | + " \"MIDN+ctrl\",\n", |
| 85 | + " \"TP73+ctrl\",\n", |
| 86 | + "]\n", |
| 87 | + "\n", |
| 88 | + "GRANULOCYTE_APOPTOSIS = [\n", |
| 89 | + " \"SPI1+ctrl\",\n", |
| 90 | + " \"ctrl+SPI1\",\n", |
| 91 | + " \"ctrl+CEBPB\",\n", |
| 92 | + " \"CEBPB+ctrl\",\n", |
| 93 | + " \"JUN+CEBPA\",\n", |
| 94 | + " \"CEBPB+CEBPA\",\n", |
| 95 | + " \"FOSB+CEBPE\",\n", |
| 96 | + " \"ZC3HAV1+CEBPA\",\n", |
| 97 | + " \"KLF1+CEBPA\",\n", |
| 98 | + " \"ctrl+CEBPA\",\n", |
| 99 | + " \"CEBPA+ctrl\",\n", |
| 100 | + " \"CEBPE+CEBPA\",\n", |
| 101 | + " \"CEBPE+SPI1\",\n", |
| 102 | + " \"CEBPE+ctrl\",\n", |
| 103 | + " \"ctrl+CEBPE\",\n", |
| 104 | + " \"CEBPE+RUNX1T1\",\n", |
| 105 | + " \"CEBPE+CEBPB\",\n", |
| 106 | + " \"FOSB+CEBPB\",\n", |
| 107 | + " \"ETS2+CEBPE\",\n", |
| 108 | + "]\n", |
| 109 | + "\n", |
| 110 | + "MEGAKARYOCYTE = [\n", |
| 111 | + " \"ctrl+ETS2\",\n", |
| 112 | + " \"MAPK1+ctrl\",\n", |
| 113 | + " \"ctrl+MAPK1\",\n", |
| 114 | + " \"ETS2+MAPK1\",\n", |
| 115 | + " \"CEBPB+MAPK1\",\n", |
| 116 | + " \"MAPK1+TGFBR2\",\n", |
| 117 | + "]\n", |
| 118 | + "\n", |
| 119 | + "PRO_GROWTH = [\n", |
| 120 | + " \"CEBPE+KLF1\",\n", |
| 121 | + " \"KLF1+MAP2K6\",\n", |
| 122 | + " \"AHR+KLF1\",\n", |
| 123 | + " \"ctrl+KLF1\",\n", |
| 124 | + " \"KLF1+ctrl\",\n", |
| 125 | + " \"KLF1+BAK1\",\n", |
| 126 | + " \"KLF1+TGFBR2\",\n", |
| 127 | + "]\n", |
| 128 | + "\n", |
| 129 | + "\n", |
| 130 | + "def download_norman_2019(output_path: str) -> None:\n", |
| 131 | + " \"\"\"\n", |
| 132 | + " Download Norman et al. 2019 data and metadata files from the hosting URLs.\n", |
| 133 | + "\n", |
| 134 | + " Args:\n", |
| 135 | + " ----\n", |
| 136 | + " output_path: Output path to store the downloaded and unzipped\n", |
| 137 | + " directories.\n", |
| 138 | + "\n", |
| 139 | + " Returns\n", |
| 140 | + " -------\n", |
| 141 | + " None. File directories are downloaded to output_path.\n", |
| 142 | + " \"\"\"\n", |
| 143 | + "\n", |
| 144 | + " file_urls = (\n", |
| 145 | + " \"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl\"\n", |
| 146 | + " \"/GSE133344_filtered_matrix.mtx.gz\",\n", |
| 147 | + " \"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl\"\n", |
| 148 | + " \"/GSE133344_filtered_genes.tsv.gz\",\n", |
| 149 | + " \"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl\"\n", |
| 150 | + " \"/GSE133344_filtered_barcodes.tsv.gz\",\n", |
| 151 | + " \"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl\"\n", |
| 152 | + " \"/GSE133344_filtered_cell_identities.csv.gz\",\n", |
| 153 | + " )\n", |
| 154 | + "\n", |
| 155 | + " for url in file_urls:\n", |
| 156 | + " output_filename = os.path.join(output_path, url.split(\"/\")[-1])\n", |
| 157 | + " download_binary_file(url, output_filename)\n", |
| 158 | + "\n", |
| 159 | + "\n", |
| 160 | + "def read_norman_2019(file_directory: str) -> coo_matrix:\n", |
| 161 | + " \"\"\"\n", |
| 162 | + " Read the expression data for Norman et al. 2019 in the given directory.\n", |
| 163 | + "\n", |
| 164 | + " Args:\n", |
| 165 | + " ----\n", |
| 166 | + " file_directory: Directory containing Norman et al. 2019 data.\n", |
| 167 | + "\n", |
| 168 | + " Returns\n", |
| 169 | + " -------\n", |
| 170 | + " A sparse matrix containing single-cell gene expression count, with rows\n", |
| 171 | + " representing genes and columns representing cells.\n", |
| 172 | + " \"\"\"\n", |
| 173 | + "\n", |
| 174 | + " with gzip.open(\n", |
| 175 | + " os.path.join(file_directory, \"GSE133344_filtered_matrix.mtx.gz\"), \"rb\"\n", |
| 176 | + " ) as f:\n", |
| 177 | + " matrix = mmread(f)\n", |
| 178 | + "\n", |
| 179 | + " return matrix" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": 2, |
| 185 | + "id": "21457d17-ce85-405e-af71-b98f55cd9dfc", |
| 186 | + "metadata": {}, |
| 187 | + "outputs": [ |
| 188 | + { |
| 189 | + "name": "stdout", |
| 190 | + "output_type": "stream", |
| 191 | + "text": [ |
| 192 | + "Downloaded data from https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl/GSE133344_filtered_matrix.mtx.gz at ./GSE133344_filtered_matrix.mtx.gz\n", |
| 193 | + "Downloaded data from https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl/GSE133344_filtered_genes.tsv.gz at ./GSE133344_filtered_genes.tsv.gz\n", |
| 194 | + "Downloaded data from https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl/GSE133344_filtered_barcodes.tsv.gz at ./GSE133344_filtered_barcodes.tsv.gz\n", |
| 195 | + "Downloaded data from https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl/GSE133344_filtered_cell_identities.csv.gz at ./GSE133344_filtered_cell_identities.csv.gz\n" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "name": "stderr", |
| 200 | + "output_type": "stream", |
| 201 | + "text": [ |
| 202 | + "Trying to set attribute `.obs` of view, copying.\n" |
| 203 | + ] |
| 204 | + } |
| 205 | + ], |
| 206 | + "source": [ |
| 207 | + "download_path = \"./norman2019/\"\n", |
| 208 | + "\n", |
| 209 | + "download_norman_2019(download_path)\n", |
| 210 | + "\n", |
| 211 | + "matrix = read_norman_2019(download_path)\n", |
| 212 | + "\n", |
| 213 | + "# List of cell barcodes. The barcodes in this list are stored in the same order\n", |
| 214 | + "# as cells are in the count matrix.\n", |
| 215 | + "cell_barcodes = pd.read_csv(\n", |
| 216 | + " os.path.join(download_path, \"GSE133344_filtered_barcodes.tsv.gz\"),\n", |
| 217 | + " sep=\"\\t\",\n", |
| 218 | + " header=None,\n", |
| 219 | + " names=[\"cell_barcode\"],\n", |
| 220 | + ")\n", |
| 221 | + "\n", |
| 222 | + "# IDs/names of the gene features.\n", |
| 223 | + "gene_list = pd.read_csv(\n", |
| 224 | + " os.path.join(download_path, \"GSE133344_filtered_genes.tsv.gz\"),\n", |
| 225 | + " sep=\"\\t\",\n", |
| 226 | + " header=None,\n", |
| 227 | + " names=[\"gene_id\", \"gene_name\"],\n", |
| 228 | + ")\n", |
| 229 | + "\n", |
| 230 | + "# Dataframe where each row corresponds to a cell, and each column corresponds\n", |
| 231 | + "# to a gene feature.\n", |
| 232 | + "matrix = pd.DataFrame(\n", |
| 233 | + " matrix.transpose().todense(),\n", |
| 234 | + " columns=gene_list[\"gene_id\"],\n", |
| 235 | + " index=cell_barcodes[\"cell_barcode\"],\n", |
| 236 | + " dtype=\"int32\",\n", |
| 237 | + ")\n", |
| 238 | + "\n", |
| 239 | + "# Dataframe mapping cell barcodes to metadata about that cell (e.g. which CRISPR\n", |
| 240 | + "# guides were applied to that cell). Unfortunately, this list has a different\n", |
| 241 | + "# ordering from the count matrix, so we have to be careful combining the metadata\n", |
| 242 | + "# and count data.\n", |
| 243 | + "cell_identities = pd.read_csv(\n", |
| 244 | + " os.path.join(download_path, \"GSE133344_filtered_cell_identities.csv.gz\")\n", |
| 245 | + ").set_index(\"cell_barcode\")\n", |
| 246 | + "\n", |
| 247 | + "# This merge call reorders our metadata dataframe to match the ordering in the\n", |
| 248 | + "# count matrix. Some cells in `cell_barcodes` do not have metadata associated with\n", |
| 249 | + "# them, and their metadata values will be filled in as NaN.\n", |
| 250 | + "aligned_metadata = pd.merge(\n", |
| 251 | + " cell_barcodes,\n", |
| 252 | + " cell_identities,\n", |
| 253 | + " left_on=\"cell_barcode\",\n", |
| 254 | + " right_index=True,\n", |
| 255 | + " how=\"left\",\n", |
| 256 | + ").set_index(\"cell_barcode\")\n", |
| 257 | + "\n", |
| 258 | + "adata = AnnData(matrix)\n", |
| 259 | + "adata.obs = aligned_metadata\n", |
| 260 | + "\n", |
| 261 | + "# Filter out any cells that don't have metadata values.\n", |
| 262 | + "rows_without_nans = [\n", |
| 263 | + " index for index, row in adata.obs.iterrows() if not row.isnull().any()\n", |
| 264 | + "]\n", |
| 265 | + "adata = adata[rows_without_nans, :]\n", |
| 266 | + "\n", |
| 267 | + "# Remove these as suggested by the authors. See lines referring to\n", |
| 268 | + "# NegCtrl1_NegCtrl0 in GI_generate_populations.ipynb in the Norman 2019 paper's\n", |
| 269 | + "# Github repo https://github.com/thomasmaxwellnorman/Perturbseq_GI/\n", |
| 270 | + "adata = adata[adata.obs[\"guide_identity\"] != \"NegCtrl1_NegCtrl0__NegCtrl1_NegCtrl0\"]\n", |
| 271 | + "\n", |
| 272 | + "# We create a new metadata column with cleaner representations of CRISPR guide\n", |
| 273 | + "# identities. The original format is <Guide1>_<Guide2>__<Guide1>_<Guide2>_<number>\n", |
| 274 | + "adata.obs[\"guide_merged\"] = adata.obs[\"guide_identity\"]\n", |
| 275 | + "\n", |
| 276 | + "control_regex = re.compile(r\"NegCtrl(.*)_NegCtrl(.*)+NegCtrl(.*)_NegCtrl(.*)\")\n", |
| 277 | + "for i in adata.obs[\"guide_merged\"].unique():\n", |
| 278 | + " if control_regex.match(i):\n", |
| 279 | + " # For any cells that only had control guides, we don't care about the\n", |
| 280 | + " # specific IDs of the guides. Here we relabel them just as \"ctrl\".\n", |
| 281 | + " adata.obs[\"guide_merged\"].replace(i, \"ctrl\", inplace=True)\n", |
| 282 | + " else:\n", |
| 283 | + " # Otherwise, we reformat the guide label to be <Guide1>+<Guide2>. If Guide1\n", |
| 284 | + " # or Guide2 was a control, we replace it with \"ctrl\".\n", |
| 285 | + " split = i.split(\"__\")[0]\n", |
| 286 | + " split = split.split(\"_\")\n", |
| 287 | + " for j, string in enumerate(split):\n", |
| 288 | + " if \"NegCtrl\" in split[j]:\n", |
| 289 | + " split[j] = \"ctrl\"\n", |
| 290 | + " adata.obs[\"guide_merged\"].replace(i, f\"{split[0]}+{split[1]}\", inplace=True)\n", |
| 291 | + "\n", |
| 292 | + "guides_to_programs = {}\n", |
| 293 | + "guides_to_programs.update(dict.fromkeys(G1_CYCLE, \"G1 cell cycle arrest\"))\n", |
| 294 | + "guides_to_programs.update(dict.fromkeys(ERYTHROID, \"Erythroid\"))\n", |
| 295 | + "guides_to_programs.update(dict.fromkeys(PIONEER_FACTORS, \"Pioneer factors\"))\n", |
| 296 | + "guides_to_programs.update(\n", |
| 297 | + " dict.fromkeys(GRANULOCYTE_APOPTOSIS, \"Granulocyte/apoptosis\")\n", |
| 298 | + ")\n", |
| 299 | + "guides_to_programs.update(dict.fromkeys(PRO_GROWTH, \"Pro-growth\"))\n", |
| 300 | + "guides_to_programs.update(dict.fromkeys(MEGAKARYOCYTE, \"Megakaryocyte\"))\n", |
| 301 | + "guides_to_programs.update(dict.fromkeys([\"ctrl\"], \"Ctrl\"))\n", |
| 302 | + "\n", |
| 303 | + "adata.obs[\"gene_program\"] = [guides_to_programs[x] if x in guides_to_programs else \"N/A\" for x in adata.obs[\"guide_merged\"]]\n", |
| 304 | + "adata.obs[\"good_coverage\"] = adata.obs[\"good_coverage\"].astype(bool)" |
| 305 | + ] |
| 306 | + }, |
| 307 | + { |
| 308 | + "cell_type": "code", |
| 309 | + "execution_count": 5, |
| 310 | + "id": "72c5c54f", |
| 311 | + "metadata": {}, |
| 312 | + "outputs": [], |
| 313 | + "source": [ |
| 314 | + "adata.write('Norman_2019_raw.h5ad')" |
| 315 | + ] |
| 316 | + } |
| 317 | + ], |
| 318 | + "metadata": { |
| 319 | + "kernelspec": { |
| 320 | + "display_name": "Python 3 (ipykernel)", |
| 321 | + "language": "python", |
| 322 | + "name": "python3" |
| 323 | + }, |
| 324 | + "language_info": { |
| 325 | + "codemirror_mode": { |
| 326 | + "name": "ipython", |
| 327 | + "version": 3 |
| 328 | + }, |
| 329 | + "file_extension": ".py", |
| 330 | + "mimetype": "text/x-python", |
| 331 | + "name": "python", |
| 332 | + "nbconvert_exporter": "python", |
| 333 | + "pygments_lexer": "ipython3", |
| 334 | + "version": "3.7.0" |
| 335 | + } |
| 336 | + }, |
| 337 | + "nbformat": 4, |
| 338 | + "nbformat_minor": 5 |
| 339 | +} |
0 commit comments