forked from janchorowski/ml_uwr
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9b75c25
commit ecf76a0
Showing
1 changed file
with
19 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,23 @@ | ||
# ml_uwr | ||
Materials for my Machine Learning course taught at the University of Wroclaw. | ||
|
||
### Exam | ||
# Learning materials | ||
| | Topic | Learning materials | | ||
|------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ||
| Lecture 1 | Introduction to ML | [slides](lectures/01-intro.pdf), Murphy Ch. 1 | | ||
| Lecture 2 | Prob. review | [slides](lectures/02-prob-review.pdf) notebook [1](lectures/02_binomial_polls.ipynb) [2](lectures/02_entropy.ipynb), Murphy Ch. 2 | | ||
| Lecture 3 | Decision Trees | [TUM course](https://argmax.ai/ml-course/lecture-02-trees/) [CS229](http://cs229.stanford.edu/notes/cs229-notes-dt.pdf), Murphy Ch. 16 | | ||
| Lecture 4 | Random Forests | [Breiman paper](https://link.springer.com/article/10.1023/A:1010933404324) [Breiman's tutorial](https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf), Murphy Ch. 5 & 16 | | ||
| Lecture 5 | Adaboost | [notebook](lectures/05_adabost_demo.ipynb) [notebook](lectures/08-gradient-boosting-demo.ipynb) Murphy Ch. 16 [xgboost slides](https://homes.cs.washington.edu/~tqchen/data/pdf/BoostedTree.pdf) | | ||
| Lecture 6 | Linear and Logistic Regression | notebook [1](lectures/06-least-squares.ipynb) [2](lectures/06-logistic-regression.ipynb) [CS229](http://cs229.stanford.edu/notes/cs229-notes1.pdf) | | ||
| Lecture 7 | More on Regression, Regularization, Lasso | [notes](lectures/07-inprogress-lecture.pdf) [notebook](lectures/07-regressions_robust_lasso.ipynb) | | ||
| Lecture 8 | Discrimantive vs Generative classifiers | [notebook](lectures/08-generative_discriminative.ipynb) [naive bayes](lectures/03_naive_bayes.ipynb) [cs229 notes](http://cs229.stanford.edu/notes2019fall/cs229-notes2.pdf) Murphy Ch. 4 | | ||
| Lecture 9 | SVM #1 | [cs229 notes](http://cs229.stanford.edu/notes2019fall/cs229-notes3.pdf) [tutorial](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/svmtutorial.pdf) | | ||
| Lecture 10 | SVM #2, Review of Sup. Learning | [slides](lectures/10-supervised_review.pdf) | | ||
| Lecture 11 | kMeans | [notebook](lectures/11-kMeans-SOM.ipynb) [CS229 kMeans](http://cs229.stanford.edu/notes/cs229-notes7a.pdf) [CS229 EM1](http://cs229.stanford.edu/notes/cs229-notes7b.pdf) [CS229 EM2](http://cs229.stanford.edu/notes/cs229-notes8.pdf) | | ||
| Lecture 12 | PCA | [notebook](lectures/12_PCA.ipynb) [CS229](http://cs229.stanford.edu/notes/cs229-notes10.pdf) | | ||
| Lecture 13 | ICA + NMF | [notebook ICA](lectures/13_ICA.ipynb) [notebook NMF](lectures/13-nmf.ipynb) [CS229](http://cs229.stanford.edu/notes/cs229-notes11.pdf) | | ||
| Lecture 14 | Intro to PGMs and HMMs | Bishop Ch. 8 & 13 | | ||
| Lecture 15 | Company presentations | | | ||
|
||
|
||
Final exam poll: | ||
https://doodle.com/poll/2iykztedmyzaqfa6 |