Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature: API-Endpoint, Filter Enhanced, Added Features, etc. #52

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
data/custom.weights
data/classes/custom.names
core/__pycache__/config.cpython-38.pyc
core/__pycache__/utils.cpython-38.pyc
core/__pycache__/yolov4.cpython-38.pyc
detections/detection1.png
core/__pycache__/functions.cpython-38.pyc
core/__pycache__/common.cpython-38.pyc
core/__pycache__/backbone.cpython-38.pyc
checkpoints/yolov4-416/variables/variables.index
checkpoints/yolov4-416/variables/variables.data-00000-of-00001
checkpoints/yolov4-416/saved_model.pb
checkpoints/yolov4-416.tflite
2 changes: 1 addition & 1 deletion conda-cpu.yml
Original file line number Diff line number Diff line change
@@ -9,7 +9,7 @@ dependencies:
- opencv-python==4.1.1.26
- lxml
- tqdm
- tensorflow==2.3.0rc0
- tensorflow==2.3.0
- absl-py
- easydict
- pillow
2 changes: 1 addition & 1 deletion core/config.py
Original file line number Diff line number Diff line change
@@ -11,7 +11,7 @@
# YOLO options
__C.YOLO = edict()

__C.YOLO.CLASSES = "./data/classes/coco.names"
__C.YOLO.CLASSES = "./data/classes/custom.names"
__C.YOLO.ANCHORS = [12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401]
__C.YOLO.ANCHORS_V3 = [10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326]
__C.YOLO.ANCHORS_TINY = [23,27, 37,58, 81,82, 81,82, 135,169, 344,319]
20 changes: 19 additions & 1 deletion core/functions.py
Original file line number Diff line number Diff line change
@@ -57,7 +57,25 @@ def crop_objects(img, data, path, allowed_classes):
cv2.imwrite(img_path, cropped_img)
else:
continue


def custom_crop_and_return_objects(img, data, allowed_classes):
boxes, scores, classes, num_objects = data
class_names = read_class_names(cfg.YOLO.CLASSES)
#create dictionary to hold count of objects for image name
counts = dict()
for i in range(num_objects):
# get count of class for part of image name
class_index = int(classes[i])
class_name = class_names[class_index]
if class_name in allowed_classes:
counts[class_name] = counts.get(class_name, 0) + 1
# get box coords
xmin, ymin, xmax, ymax = boxes[i]
# crop detection from image (take an additional 5 pixels around all edges)
return img[int(ymin)-5:int(ymax)+5, int(xmin)-5:int(xmax)+5]
else:
continue

# function to run general Tesseract OCR on any detections
def ocr(img, data):
boxes, scores, classes, num_objects = data
239 changes: 236 additions & 3 deletions core/utils.py
Original file line number Diff line number Diff line change
@@ -6,6 +6,12 @@
import pytesseract
from core.config import cfg
import re
import statistics

# Deskew
import math
from typing import Tuple, Union
from deskew import determine_skew

# If you don't have tesseract executable in your PATH, include the following:
# pytesseract.pytesseract.tesseract_cmd = r'<full_path_to_your_tesseract_executable>'
@@ -85,6 +91,218 @@ def recognize_plate(img, coords):
#cv2.waitKey(0)
return plate_num

def custom_recognize_plate(img, fast_ocr, deskew):
def optical_image_recognition(image, char_whitelist = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ", psm = 13, oem = 1):
config = f"-c tessedit_char_whitelist={char_whitelist} --psm {psm} --oem {oem}"

extracted_text = pytesseract.image_to_string(image, config=config)

# clean tesseract text by removing any unwanted blank spaces
clean_text = re.sub('[\W_]+', '', extracted_text)
return clean_text

def hconcat_resize_min(im_list, interpolation=cv2.INTER_CUBIC):
h_min = min(im.shape[0] for im in im_list)
im_list_resize = [cv2.resize(im, (int(im.shape[1] * h_min / im.shape[0]), h_min), interpolation=interpolation)
for im in im_list]
return cv2.hconcat(im_list_resize)

def find_average_and_check_contours(sorted_contours, height_org, width_org):
correct_contours = []
average_height_list = []

for cnt in sorted_contours:
x,y,w,h = cv2.boundingRect(cnt)

# if height of box is not a quarter of total height then skip
if height_org / float(h) > 6: continue

ratio = h / float(w)
# if height to width ratio is less than 1.4 skip
if ratio < 1.25: continue

area = h * w
# if width is not more than 25 pixels skip
if width_org / float(w) > 30: continue
# if area is less than 100 pixels skip
if area < 100: continue

average_height_list.append(h)
correct_contours.append(cnt)

# remove smallest and largest number for a better average
average_height_list.remove(max(average_height_list))
average_height_list.remove(min(average_height_list))

# calculate letter area average
average_height = statistics.mean(average_height_list)

return correct_contours, average_height

def find_check_contours(sorted_contours, height_org, width_org, image):
correct_contours = []
for idx, cnt in enumerate(sorted_contours):
x,y,w,h = cv2.boundingRect(cnt)

# if height of box is not a quarter of total height then skip
if height_org / float(h) > 6: continue

ratio = h / float(w)
# if height to width ratio is less than 1.25 skip
if ratio < 1.25: continue

area = h * w
# if width is not more than 30 pixels skip
if width_org / float(w) > 30: continue
# if area is less than 100 pixels skip
if area < 100: continue

value_index = [cnt, idx]
correct_contours.append(value_index)

return correct_contours

def calculate_average_height_of_letter(contour_list):
average_height_list = contour_list

# remove smallest and largest number for a better average
average_height_list.remove(max(average_height_list))
average_height_list.remove(min(average_height_list))

# calculate letter area average
return statistics.mean(average_height_list)

def most_frequent(list):
counter = 0
num = list[0]

for i in list:
curr_frequency = list.count(i)
if(curr_frequency> counter):
counter = curr_frequency
num = i

return num

def rotate(image: np.ndarray, angle: float, background: Union[int, Tuple[int, int, int]]) -> np.ndarray:
old_width, old_height = image.shape[:2]
angle_radian = math.radians(angle)
width = abs(np.sin(angle_radian) * old_height) + abs(np.cos(angle_radian) * old_width)
height = abs(np.sin(angle_radian) * old_width) + abs(np.cos(angle_radian) * old_height)

image_center = tuple(np.array(image.shape[1::-1]) / 2)
rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
rot_mat[1, 2] += (width - old_width) / 2
rot_mat[0, 2] += (height - old_height) / 2
return cv2.warpAffine(image, rot_mat, (int(round(height)), int(round(width))), borderValue=background)

# Setup parameters
enable_fast = fast_ocr
enable_deskew = deskew
plate_num = ""
offset_size_letter = 0.1 # Maximum offset of the average letter

#region Filters
# Grayscale image
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

# Deskew image
if enable_deskew:
angle = determine_skew(gray)
rotated = rotate(gray, angle, (0, 0, 0))
else:
rotated = gray

# Resize image to three times as large as original for better readability
resize = cv2.resize(rotated, None, fx = 3, fy = 3, interpolation = cv2.INTER_CUBIC)

# threshold the image using Otsus method to preprocess for tesseract
ret, thresh = cv2.threshold(resize, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY_INV)

# create rectangular kernel for dilation
rect_kern = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))

# apply dilation to make regions more clear
dilation = cv2.dilate(thresh, rect_kern, iterations = 1)
#endregion

#region Contours
# find contours of regions of interest within license plate
contours, hierarchy = cv2.findContours(dilation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#endregion

# create copy of gray image
copy_orginal = resize.copy()

# Help to calculate if a contours is valid, this gives the height and width of the orginal image
height, width = copy_orginal.shape

# Returns the correct contours and the average height of a letter
correct_contours = find_check_contours(contours, height, width, resize.copy())

# Get Plate Level

list_plate_level = []
for cnt, index in correct_contours:
list_plate_level.append(hierarchy[0,index,3])
plate_level = most_frequent(list_plate_level)

print(f"PlateLv {plate_level}")

correct_contours_no_child = []
correct_contours_height_list = []
for cnt, index in correct_contours:
if plate_level == hierarchy[0,index,3]:
x,y,w,h = cv2.boundingRect(cnt)
correct_contours_no_child.append(cnt)
correct_contours_height_list.append(h)

# Calculate the average height of a letter to increase the accuracy
average_height = calculate_average_height_of_letter(correct_contours_height_list)

# sort contours left-to-right
sorted_correct_contours = sorted(correct_contours_no_child, key=lambda ctr: cv2.boundingRect(ctr)[0])

images = []
for cnt in sorted_correct_contours:
x,y,w,h = cv2.boundingRect(cnt)

if h/average_height > (1 + offset_size_letter) or h/average_height < (1 - offset_size_letter):
continue

# draw the rectangle
cv2.rectangle(copy_orginal, (x,y), (x+w, y+h), (0,255,0),2)
roi = thresh[y-5:y+h+5, x-5:x+w+5]
roi = cv2.bitwise_not(roi)
roi = cv2.medianBlur(roi, 5)
images.append(roi)

if enable_fast:
# Concatenate all the valid images horizontally to save time
con_h_valid_images = hconcat_resize_min(images)
# Try to read what the license plate is
try:
text = optical_image_recognition(con_h_valid_images, psm=7)
# clean tesseract text by removing any unwanted blank spaces
clean_text = re.sub('[\W_]+', '', text)
plate_num += clean_text
except:
text = None
else:
for image in images:
# Try to read what the license plate is
try:
text = optical_image_recognition(image)
# clean tesseract text by removing any unwanted blank spaces
clean_text = re.sub('[\W_]+', '', text)
plate_num += clean_text
except:
text = None

if plate_num != None:
print("License Plate #: ", plate_num)
return plate_num

def load_freeze_layer(model='yolov4', tiny=False):
if tiny:
if model == 'yolov3':
@@ -151,7 +369,6 @@ def load_weights(model, weights_file, model_name='yolov4', is_tiny=False):
# assert len(wf.read()) == 0, 'failed to read all data'
wf.close()


def read_class_names(class_file_name):
names = {}
with open(class_file_name, 'r') as data:
@@ -213,7 +430,18 @@ def format_boxes(bboxes, image_height, image_width):
box[0], box[1], box[2], box[3] = xmin, ymin, xmax, ymax
return bboxes

def draw_bbox(image, bboxes, info = False, counted_classes = None, show_label=True, allowed_classes=list(read_class_names(cfg.YOLO.CLASSES).values()), read_plate = False):
def extract_and_correct_license_plate(img, area):
license_plate = None
boxes, scores, classes, num_objects = area
for i in range(num_objects):
# separate coordinates from box
xmin, ymin, xmax, ymax = boxes[i]
# get the subimage that makes up the bounded region and take an additional 5 pixels on each side
license_plate = img[int(ymin)-5:int(ymax)+5, int(xmin)-5:int(xmax)+5]
license_plate = cv2.cvtColor(np.array(license_plate), cv2.COLOR_BGR2RGB)
return license_plate

def draw_bbox(image, bboxes, info = False, counted_classes = None, show_label=True, allowed_classes=list(read_class_names(cfg.YOLO.CLASSES).values()), read_plate = False, custom_reco = False, fast_ocr = False):
classes = read_class_names(cfg.YOLO.CLASSES)
num_classes = len(classes)
image_h, image_w, _ = image.shape
@@ -238,7 +466,12 @@ def draw_bbox(image, bboxes, info = False, counted_classes = None, show_label=Tr
else:
if read_plate:
height_ratio = int(image_h / 25)
plate_number = recognize_plate(image, coor)
plate_number = None
if custom_reco:
license_plate = extract_and_correct_license_plate(image, bboxes)
plate_number = custom_recognize_plate(license_plate, fast_ocr)
else:
plate_number = recognize_plate(image, coor)
if plate_number != None:
cv2.putText(image, plate_number, (int(coor[0]), int(coor[1]-height_ratio)),
cv2.FONT_HERSHEY_SIMPLEX, 1.25, (255,255,0), 2)
Loading