Skip to content
4 changes: 4 additions & 0 deletions tensorlayer/dataflow/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
from .base import Dataset
from .base import Transform
from .common import Dataloader
from .common import TFDataloader
73 changes: 73 additions & 0 deletions tensorlayer/dataflow/base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
class Dataset(object):

def __getitem__(self, index):
raise NotImplementedError("A Dataset must implement __getitem__(index) method.")

def __len__(self):
raise NotImplementedError("A Dataset must implement __len__() method.")

def __iter__(self):
for i in range(self.__len__()):
yield self.__getitem__(i)

def __call__(self, *args, **kwargs):
return self.__iter__()


class DatasetWrapper(object):
def __init__(self, ds):
self.ds = ds
self.ds_len = len(ds)

def __len__(self):
return len(self.ds)

def __iter__(self):
for dp in self.ds:
yield dp

def __call__(self, *args, **kwargs):
return self.__iter__()


class IndexableDatasetWrapper(object):
def __init__(self, ds):
self.ds = ds
self.ds_len = len(ds)

def __getitem__(self, index):
return self.ds.__getitem__(index)

def __len__(self):
return len(self.ds)

def __call__(self, *args, **kwargs):
return self


class Transform(object):
def __call__(self, *args, **kwargs):
raise NotImplementedError("Transform must implement __call__() method.")


class _Transforms_for_tf_dataset(object):
"""
This class aggregate Transforms into one object in order to use tf.data.Dataset.map API
"""

def __init__(self, transforms):
self.transforms = transforms

def __call__(self, *args):
# assert len(args) == len(self.transforms)
# data_list = [None] * len(args)
# for i in range(len(args)):
# data = args[i]
# for transform in self.transforms[i]:
# data = transform(data)
# data_list[i] = data
# return data_list
data_list = list(args)
for transform in self.transforms:
data_list = transform(*data_list)
return data_list
Loading