Skip to content

Commit

Permalink
added project page for taxabind
Browse files Browse the repository at this point in the history
  • Loading branch information
subash-khanal committed Nov 4, 2024
1 parent c6b868b commit f56612c
Showing 1 changed file with 16 additions and 14 deletions.
30 changes: 16 additions & 14 deletions index.html
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,7 @@ <h2>Publications</h2>
<a href="https://arxiv.org/pdf/2411.00683">arxiv</a> /
<a href="data/taxabind.bib">bibtex</a> /
<a href="https://github.com/mvrl/TaxaBind">code</a>
<a href="https://vishu26.github.io/taxabind/index.html">project page</a>
<p></p>
<p>TaxaBind is a suite of multimodal models useful for downstream ecological tasks covering six modalities: ground-level image, geographic location, satellite image, text, audio, and environmental features.</p>
</td>
Expand Down Expand Up @@ -197,43 +198,44 @@ <h2>Publications</h2>
</td>
</tr>


<tr>
<td width="100%" valign="middle">
<a href="https://arxiv.org/pdf/2407.09672" id="MCG_journal">
<span class="papertitle">Mixed-View Panorama Synthesis using Geospatially Guided Diffusion.</span>
<a href="https://arxiv.org/pdf/2312.08334.pdf" id="MCG_journal">
<span class="papertitle">LD-SDM: Language-Driven Hierarchical Species Distribution Modeling</span>
</a>
<br>
Xiong Zhexiao, Xing Xin, Workman Scott, <strong>Khanal Subash</strong>, Jacobs Nathan
Sastry Srikumar, Xin Xing, Dhakal Aayush, <strong>Khanal Subash</strong>, Ahmad Adeel, and Jacobs Nathan
<br>
<em>preprint</em>, 2024
<br>
<a href="https://arxiv.org/pdf/2407.09672">arxiv</a> /
<a href="data/mixed.bib">bibtex</a>
<a href="https://arxiv.org/pdf/2312.08334.pdf">arxiv</a> /
<a href="data/ldsdm.bib">bibtex</a>
<p></p>
<p>
This work introduces the task of mixed-view panorama synthesis, where the goal is to synthesize a novel panorama given a small set of input panoramas and a satellite image of the area.</p>
We introduced a novel approach for species distribution modeling that uses a large-language model to generate a representation of species. This provides flexibility to generate range maps at different levels of the taxonomic hierarchy and for unseen species.</p>
</td>
</tr>

<tr>
<td width="100%" valign="middle">
<a href="https://arxiv.org/pdf/2312.08334.pdf" id="MCG_journal">
<span class="papertitle">LD-SDM: Language-Driven Hierarchical Species Distribution Modeling</span>
<a href="https://arxiv.org/pdf/2407.09672" id="MCG_journal">
<span class="papertitle">Mixed-View Panorama Synthesis using Geospatially Guided Diffusion.</span>
</a>
<br>
Sastry Srikumar, Xin Xing, Dhakal Aayush, <strong>Khanal Subash</strong>, Ahmad Adeel, and Jacobs Nathan
Xiong Zhexiao, Xing Xin, Workman Scott, <strong>Khanal Subash</strong>, Jacobs Nathan
<br>
<em>preprint</em>, 2024
<br>
<a href="https://arxiv.org/pdf/2312.08334.pdf">arxiv</a> /
<a href="data/ldsdm.bib">bibtex</a>
<a href="https://arxiv.org/pdf/2407.09672">arxiv</a> /
<a href="data/mixed.bib">bibtex</a>
<p></p>
<p>
We introduced a novel approach for species distribution modeling that uses a large-language model to generate a representation of species. This provides flexibility to generate range maps at different levels of the taxonomic hierarchy and for unseen species.</p>
This work introduces the task of mixed-view panorama synthesis, where the goal is to synthesize a novel panorama given a small set of input panoramas and a satellite image of the area.</p>
</td>
</tr>



<tr>
<td width="100%" valign="middle">
<a href="https://arxiv.org/pdf/2206.14841.pdf" id="MCG_journal">
Expand Down

0 comments on commit f56612c

Please sign in to comment.