Skip to content

Commit

Permalink
ecc : updates vascular proliferation characteristic information
Browse files Browse the repository at this point in the history
  • Loading branch information
madetunj committed Jan 15, 2025
1 parent 42a568c commit 1a6e690
Showing 1 changed file with 16 additions and 11 deletions.
27 changes: 16 additions & 11 deletions ecc/morph/ECC-MORPH-000001.yml
Original file line number Diff line number Diff line change
Expand Up @@ -32,28 +32,33 @@ values:
references:
- kind: manuscript
title: Vascular smooth muscle hyperplasia underlies the formation of glomeruloid vascular structures of glioblastoma multiforme
authors:
context:
authors: Haddad SF, Moore SA, Schelper RL, Goeken JA.
context: |
A study of seven glioblastomas with glomeruloid vascular structures suggests that these formations result primarily from smooth muscle hyperplasia. Endothelial cells of both normal and glomeruloid vessels stained positively for UEA-1 and factor VIII-related antigen (fVIII/RAg), while smooth muscle cells stained with muscle-specific actin antibodies (MSA and SMSA). The lack of MSA/SMSA staining in the endothelial cells of the glomeruloid structures indicates that smooth muscle cells, rather than endothelial cells, are primarily involved in the vascular proliferation seen in glioblastoma.
url: https://pubmed.ncbi.nlm.nih.gov/1381413/
highlighted: true
- kind: manuscript
title: Proliferative potential of vascular components in human glioblastoma multiforme
authors:
context:
authors: Nagashima T, Hoshino T, Cho KG.
context: |
In a study of 16 glioblastoma multiforme patients, 5-bromo-deoxyuridine (BrdU) was used to label S-phase cells in tumor tissue. The BrdU labeling index (LI) for vascular components was significantly higher in glioblastomas than in normal brain tissue, but lower than the tumor cells themselves. Primary tumors had a higher vascular BrdU LI (4.5%) compared to recurrent tumors (2.7%), though the difference was not statistically significant. Vascular labeling was inconsistent, occurring mainly in glomerular-shaped vessels, with only 20% showing labeled cells. These findings suggest that vascular proliferation in glioblastomas may slow down or cease at a certain stage and is unlikely to be due to neoplastic transformation.
url: https://pubmed.ncbi.nlm.nih.gov/3039783/
highlighted: true
- kind: manuscript
title: Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study
authors:
context:
authors: Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ
context: |
Recent studies of glioblastoma multiforme (GBM) microvascular proliferation (MVP) suggest that pericytes and vascular smooth muscle cells (VSMC), not just endothelial cells (EC), play a major role. Immunohistochemical analysis revealed two distinct cell types—EC and pericytes/VSMC—with no transitional forms. Pericytes/VSMC were found to contribute extensively to MVP, particularly in early stages of tumor capillary formation, highlighting their essential role in GBM angiogenesis.
url: https://pubmed.ncbi.nlm.nih.gov/7745429/
- kind: manuscript
title: Genetic modulation of hypoxia induced gene expression and angiogenesis: relevance to brain tumors
authors:
context:
title: Genetic modulation of hypoxia induced gene expression and angiogenesis, relevance to brain tumors
authors: Brat DJ, Kaur B, Van Meir EG
context: |
Angiogenesis, crucial for the growth of infiltrative astrocytomas, manifests as "microvascular hyperplasia" in glioblastoma multiforme, the most aggressive form. This abnormal vascular proliferation, often linked to necrosis, is driven by hypoxic conditions within the tumor and genetic alterations. Hypoxia upregulates pro-angiogenic factors like VEGF through the HIF-1 pathway, which is influenced by genetic changes in oncogenes and tumor suppressor genes such as PTEN, TP53, and EGFR. These genetic alterations also impact the expression of other angiogenic factors, further promoting tumor angiogenesis.
url: https://pubmed.ncbi.nlm.nih.gov/12456339/
- kind: manuscript
title: Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1α in human glioblastoma
authors:
context:
authors: Clara CA, Marie SK, de Almeida JR, Wakamatsu A, Oba-Shinjo SM, Uno M, Neville M, Rosemberg S
context: |
This study analyzed the expression of PDGF-C, VEGF, and HIF-1α in 208 glioblastoma (GBM) cases to understand their role in angiogenesis and prognosis. The results showed that HIF-1α, VEGF, and PDGF-C were highly expressed in most tumors, with HIF-1α expression correlating with increased vascular density and higher VEGF and PDGF-C levels. A significant correlation was found between VEGF and PDGF-C expression in both tumor cells and blood vessels. Endothelial cells with positive VEGF and PDGF-C expression also showed markers of neoangiogenesis and proliferation. Nuclear staining for VEGF and HIF-1α was linked to poorer survival. The findings support the potential benefit of combined anti-angiogenic therapies for improving GBM treatment outcomes.
url: "https://pubmed.ncbi.nlm.nih.gov/24612214/"

0 comments on commit 1a6e690

Please sign in to comment.