Implementation of Jump-Start Reinforcement Learning (JSRL) with Stable Baselines3.
pip install jsrl
See examples/train_jsrl_curriculum.py
or examples/train_jsrl_random.py
for
examples on how to train TD3 + JSRL on the PointMaze-v3
environment.
@inproceedings{jsrl2022arxiv,
title={Jump-Start Reinforcement Learning},
author={Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, Sergey Levine, and Karol Hausman},
booktitle={arXiv preprint arXiv:2204.02372},
year={2022}
}
@article{stable-baselines3,
author = {Antonin Raffin and Ashley Hill and Adam Gleave and Anssi Kanervisto and Maximilian Ernestus and Noah Dormann},
title = {Stable-Baselines3: Reliable Reinforcement Learning Implementations},
journal = {Journal of Machine Learning Research},
year = {2021},
volume = {22},
number = {268},
pages = {1-8},
url = {http://jmlr.org/papers/v22/20-1364.html}
}
@software{gymnasium_robotics2023github,
author = {Rodrigo de Lazcano and Kallinteris Andreas and Jun Jet Tai and Seungjae Ryan Lee and Jordan Terry},
title = {Gymnasium Robotics},
url = {http://github.com/Farama-Foundation/Gymnasium-Robotics},
version = {1.2.0},
year = {2023},
}