About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Perform the symmetric rank 1 operation
A = α*x*x^T + A
.
npm install @stdlib/blas-base-dsyr
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var dsyr = require( '@stdlib/blas-base-dsyr' );
Performs the symmetric rank 1 operation A = α*x*x^T + A
where α
is a scalar, x
is an N
element vector, and A
is an N
by N
symmetric matrix.
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0 ] );
dsyr( 'row-major', 'upper', 3, 1.0, x, 1, A, 3 );
// A => <Float64Array>[ 2.0, 4.0, 6.0, 2.0, 5.0, 8.0, 3.0, 2.0, 10.0 ]
The function has the following parameters:
- order: storage layout.
- uplo: specifies whether the upper or lower triangular part of the symmetric matrix
A
should be referenced. - N: number of elements along each dimension of
A
. - α: scalar constant.
- x: input
Float64Array
. - sx: stride length for
x
. - A: input matrix stored in linear memory as a
Float64Array
. - LDA: stride of the first dimension of
A
(a.k.a., leading dimension of the matrixA
).
The stride parameters determine how elements in the input arrays are accessed at runtime. For example, to iterate over the elements of x
in reverse order,
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 3.0, 2.0, 1.0 ] );
dsyr( 'row-major', 'upper', 3, 1.0, x, -1, A, 3 );
// A => <Float64Array>[ 2.0, 4.0, 6.0, 2.0, 5.0, 8.0, 3.0, 2.0, 10.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var x0 = new Float64Array( [ 0.0, 3.0, 2.0, 1.0 ] );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
dsyr( 'row-major', 'upper', 3, 1.0, x1, -1, A, 3 );
// A => <Float64Array>[ 2.0, 4.0, 6.0, 2.0, 5.0, 8.0, 3.0, 2.0, 10.0 ]
Performs the symmetric rank 1 operation A = α*x*x^T + A
, using alternative indexing semantics and where α
is a scalar, x
is an N
element vector, and A
is an N
by N
symmetric matrix.
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0 ] );
dsyr.ndarray( 'upper', 3, 1.0, x, 1, 0, A, 3, 1, 0 );
// A => <Float64Array>[ 2.0, 4.0, 6.0, 2.0, 5.0, 8.0, 3.0, 2.0, 10.0 ]
The function has the following additional parameters:
- ox: starting index for
x
. - sa1: stride of the first dimension of
A
. - sa2: stride of the second dimension of
A
. - oa: starting index for
A
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
dsyr.ndarray( 'upper', 3, 1.0, x, -2, 4, A, 3, 1, 0 );
// A => <Float64Array>[ 26.0, 17.0, 8.0, 2.0, 10.0, 5.0, 3.0, 2.0, 2.0 ]
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var ones = require( '@stdlib/array-ones' );
var dsyr = require( '@stdlib/blas-base-dsyr' );
var opts = {
'dtype': 'float64'
};
var N = 3;
// Create N-by-N symmetric matrices:
var A1 = ones( N*N, opts.dtype );
var A2 = ones( N*N, opts.dtype );
// Create a random vector:
var x = discreteUniform( N, -10.0, 10.0, opts );
dsyr( 'row-major', 'upper', 3, 1.0, x, 1, A1, 3 );
console.log( A1 );
dsyr.ndarray( 'upper', 3, 1.0, x, 1, 0, A2, 3, 1, 0 );
console.log( A2 );
#include "stdlib/blas/base/dsyr.h"
Performs the symmetric rank 1 operation A = α*x*x^T + A
where α
is a scalar, x
is an N
element vector, and A
is an N
by N
symmetric matrix.
#include "stdlib/blas/base/shared.h"
double A[] = { 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 };
const double x[] = { 1.0, 2.0, 3.0 };
c_dsyr( CblasColMajor, CblasUpper, 3, 1.0, x, 1, A, 3 );
The function accepts the following arguments:
- layout:
[in] CBLAS_LAYOUT
storage layout. - uplo:
[in] CBLAS_UPLO
specifies whether the upper or lower triangular part of the symmetric matrixA
should be referenced. - N:
[in] CBLAS_INT
number of elements along each dimension ofA
. - alpha:
[in] double
scalar constant. - X:
[in] double*
input array. - sx:
[in] CBLAS_INT
stride length forX
. - A:
[inout] double*
input matrix. - LDA:
[in] CBLAS_INT
stride of the first dimension ofA
(a.k.a., leading dimension of the matrixA
).
void c_dsyr( const CBLAS_LAYOUT layout, const CBLAS_UPLO uplo, const CBLAS_INT N, const double alpha, const double *X, const CBLAS_INT strideX, double *A, const CBLAS_INT LDA )
Performs the symmetric rank 1 operation A = α*x*x^T + A
, using alternative indexing semantics and where α
is a scalar, x
is an N
element vector, and A
is an N
by N
symmetric matrix.
#include "stdlib/blas/base/shared.h"
double A[] = { 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 };
const double x[] = { 1.0, 2.0, 3.0 };
c_dsyr_ndarray( CblasUpper, 3, 1.0, x, 1, 0, A, 3, 1, 0 );
The function accepts the following arguments:
- uplo:
[in] CBLAS_UPLO
specifies whether the upper or lower triangular part of the symmetric matrixA
should be referenced. - N:
[in] CBLAS_INT
number of elements along each dimension ofA
. - alpha:
[in] double
scalar constant. - X:
[in] double*
input array. - sx:
[in] CBLAS_INT
stride length forX
. - ox:
[in] CBLAS_INT
starting index forX
. - A:
[inout] double*
input matrix. - sa1:
[in] CBLAS_INT
stride of the first dimension ofA
. - sa2:
[in] CBLAS_INT
stride of the second dimension ofA
. - oa:
[in] CBLAS_INT
starting index forA
.
void c_dsyr_ndarray( const CBLAS_UPLO uplo, const CBLAS_INT N, const double alpha, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, double *A, const CBLAS_INT strideA1, const CBLAS_INT strideA2, const CBLAS_INT offsetA )
#include "stdlib/blas/base/dsyr.h"
#include "stdlib/blas/base/shared.h"
#include <stdio.h>
int main( void ) {
// Define 3x3 symmetric matrices stored in row-major layout:
double A1[ 3*3 ] = {
1.0, 2.0, 3.0,
2.0, 1.0, 2.0,
3.0, 2.0, 1.0
};
double A2[ 3*3 ] = {
1.0, 2.0, 3.0,
2.0, 1.0, 2.0,
3.0, 2.0, 1.0
};
// Define a vector:
const double x[ 3 ] = { 1.0, 2.0, 3.0 };
// Specify the number of elements along each dimension of `A1` and `A2`:
const int N = 3;
// Perform the symmetric rank 1 operation `A = α*x*x^T + A`:
c_dsyr( CblasColMajor, CblasUpper, N, 1.0, x, 1, A1, N );
// Print the result:
for ( int i = 0; i < N*N; i++ ) {
printf( "A1[ %i ] = %lf\n", i, A1[ i ] );
}
// Perform the symmetric rank 1 operation `A = α*x*x^T + A` using alternative indexing semantics:
c_dsyr_ndarray( CblasUpper, N, 1.0, x, 1, 0, A2, N, 1, 0 );
// Print the result:
for ( int i = 0; i < N*N; i++ ) {
printf( "A2[ %i ] = %lf\n", i, A[ i ] );
}
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.