|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "c3cfdffe", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Sascha Spors,\n", |
| 9 | + "Professorship Signal Theory and Digital Signal Processing,\n", |
| 10 | + "Institute of Communications Engineering (INT),\n", |
| 11 | + "Faculty of Computer Science and Electrical Engineering (IEF),\n", |
| 12 | + "University of Rostock,\n", |
| 13 | + "Germany\n", |
| 14 | + "\n", |
| 15 | + "# Data Driven Audio Signal Processing - A Tutorial with Computational Examples\n", |
| 16 | + "\n", |
| 17 | + "Master Course #24512\n", |
| 18 | + "\n", |
| 19 | + "- lecture: https://github.com/spatialaudio/data-driven-audio-signal-processing-lecture\n", |
| 20 | + "- tutorial: https://github.com/spatialaudio/data-driven-audio-signal-processing-exercise\n", |
| 21 | + "\n", |
| 22 | + "Feel free to contact lecturer [email protected]" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "markdown", |
| 27 | + "id": "c4810223", |
| 28 | + "metadata": {}, |
| 29 | + "source": [ |
| 30 | + "# Gradient Descent\n", |
| 31 | + "\n", |
| 32 | + "- a nice 2D loss surface is discussed with Fig. 4.4(b) in the highly recommended textbook https://doi.org/10.1007/978-3-030-40344-7 (page 150)\n", |
| 33 | + "- this loss function has one global minimum, three local minima, one local maximum and four saddle points\n", |
| 34 | + "- while this is still a toy example spanning a comparable simple surface, different gradient descents can be studied when varying\n", |
| 35 | + " - starting point\n", |
| 36 | + " - learning rate\n", |
| 37 | + " - stop criterion" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": null, |
| 43 | + "id": "8f4ccf84", |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "import numpy as np\n", |
| 48 | + "import matplotlib.pyplot as plt\n", |
| 49 | + "from matplotlib import cm" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": null, |
| 55 | + "id": "33001986", |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
| 59 | + "matplotlib_widget_flag = True" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "code", |
| 64 | + "execution_count": null, |
| 65 | + "id": "4c806f80", |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "if matplotlib_widget_flag:\n", |
| 70 | + " %matplotlib widget" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "id": "ee2030e1", |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "w1 = np.linspace(-2, 3, 1000, endpoint=False)\n", |
| 81 | + "w2 = np.linspace(-2, 3, 1000, endpoint=False)\n", |
| 82 | + "W1, W2 = np.meshgrid(w1, w2, indexing='xy')\n", |
| 83 | + "# cf. Fig. 4.4(b) from https://doi.org/10.1007/978-3-030-40344-7 \n", |
| 84 | + "J = (W1**4 + W2**4) / 4 - (W1**3 + W2**3) / 3 - W1**2 - W2**2 + 4" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": null, |
| 90 | + "id": "13c6a43d", |
| 91 | + "metadata": {}, |
| 92 | + "outputs": [], |
| 93 | + "source": [ |
| 94 | + "# local maximum at (0,0) -> J(0,0) = 4\n", |
| 95 | + "J[W1==0][w2==0]" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "id": "572e2a63", |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "# local minimum at (2,-1) -> J(2,-1) = 11/12 = 0.91666667\n", |
| 106 | + "J[W1==2][w2==-1]" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": null, |
| 112 | + "id": "10bba308", |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "# local minimum at (-1,-1) -> J(-1,-1) = 19/6 = 3.16666667\n", |
| 117 | + "J[W1==-1][w2==-1]" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "id": "3d54a722", |
| 124 | + "metadata": {}, |
| 125 | + "outputs": [], |
| 126 | + "source": [ |
| 127 | + "# local minimum at (-1,2) -> J(-1,2) = 11/12 = 0.91666667\n", |
| 128 | + "J[W1==-1][w2==2]" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": null, |
| 134 | + "id": "87138cef", |
| 135 | + "metadata": {}, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "# global minimum at (2,2) -> J(2,2) = -4/3 = -1.33333333\n", |
| 139 | + "np.min(J), J[W1==2][w2==2], W1[np.min(J) == J], W2[np.min(J) == J]" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "code", |
| 144 | + "execution_count": null, |
| 145 | + "id": "003e8406", |
| 146 | + "metadata": {}, |
| 147 | + "outputs": [], |
| 148 | + "source": [ |
| 149 | + "# saddle points at\n", |
| 150 | + "# (2,0); (0,-1); (-1,0); (0,2)\n", |
| 151 | + "# J = \n", |
| 152 | + "J[W1==2][w2==0], J[W1==0][w2==-1], J[W1==-1][w2==0], J[W1==0][w2==2]" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "markdown", |
| 157 | + "id": "c756302c", |
| 158 | + "metadata": {}, |
| 159 | + "source": [ |
| 160 | + "## Loss Surface" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": null, |
| 166 | + "id": "c57eb277", |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "fig, ax = plt.subplots(subplot_kw={\"projection\": \"3d\"})\n", |
| 171 | + "surf = ax.plot_surface(W1, W2, J,\n", |
| 172 | + " cmap=cm.magma_r,\n", |
| 173 | + " rstride=10, cstride=10,\n", |
| 174 | + " linewidth=0, antialiased=False)\n", |
| 175 | + "ax.plot([2], [2], [-4/3], 'o')\n", |
| 176 | + "ax.set_zlim(-2, 10)\n", |
| 177 | + "ax.set_xlabel(r'$w_1$')\n", |
| 178 | + "ax.set_ylabel(r'$w_2$')\n", |
| 179 | + "ax.set_zlabel(r'$J(w_1,w_2)$')\n", |
| 180 | + "ax.view_init(elev=65, azim=-135, roll=0)\n", |
| 181 | + "fig.colorbar(surf, shrink=0.67, aspect=20)" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "markdown", |
| 186 | + "id": "aa797ec2", |
| 187 | + "metadata": {}, |
| 188 | + "source": [ |
| 189 | + "## Gradient Descent\n", |
| 190 | + "\n", |
| 191 | + "With the chosen parameters\n", |
| 192 | + "- `w_act = np.array([[3], [0+1e-3]])`\n", |
| 193 | + "- `step_size = 1e-2`\n", |
| 194 | + "- `N = 2**10`\n", |
| 195 | + "the gradient descent has a delicate outcome: it approaches one saddle point in the beginning, comparably fast; and because we are slightly offset with $w_2 = 1e-3$ the GD will not die on the saddle point, but rather (comparably slowly) pursues to the global minimum, making a radical turn close to the saddle point.\n", |
| 196 | + "\n", |
| 197 | + "1. Set init vallues such that GD will end in a saddle point\n", |
| 198 | + "2. What possible choices to init $w_2$ for letting GD path arrive at the local minimum (2,-1)\n", |
| 199 | + "3. Do we have a chance with the given starting parameters and plain gradient descent algorithm, that the GD path finds its way to the local minima (-1,-1) or (-1,2)?" |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "code", |
| 204 | + "execution_count": null, |
| 205 | + "id": "0026ad20", |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [], |
| 208 | + "source": [ |
| 209 | + "w_act = np.array([[3], [0+1e-3]])\n", |
| 210 | + "step_size = 1e-2\n", |
| 211 | + "N = 2**10\n", |
| 212 | + "\n", |
| 213 | + "# gradient descent\n", |
| 214 | + "w1w2J = np.zeros([3, N])\n", |
| 215 | + "for i in range(N):\n", |
| 216 | + " # calc gradient\n", |
| 217 | + " grad_J_to_w = np.array([[w_act[0, 0]**3 - w_act[0, 0]**2 - 2*w_act[0, 0]],\n", |
| 218 | + " [w_act[1, 0]**3 - w_act[1, 0]**2 - 2*w_act[1, 0]]])\n", |
| 219 | + " # GD update\n", |
| 220 | + " w_act = w_act - step_size * grad_J_to_w\n", |
| 221 | + " # calc cost with current weights\n", |
| 222 | + " J_tmp = (w_act[0, 0]**4+w_act[1, 0]**4)/4 -\\\n", |
| 223 | + " (w_act[0, 0]**3 + w_act[1, 0]**3)/3 -\\\n", |
| 224 | + " w_act[0, 0]**2 - w_act[1, 0]**2 + 4\n", |
| 225 | + " # store the path for plotting\n", |
| 226 | + " w1w2J[0:2, i] = np.squeeze(w_act)\n", |
| 227 | + " w1w2J[2, i] = J_tmp" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "markdown", |
| 232 | + "id": "24217cd3", |
| 233 | + "metadata": {}, |
| 234 | + "source": [ |
| 235 | + "## Plot Loss Surface and Gradient Descent Path" |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "code", |
| 240 | + "execution_count": null, |
| 241 | + "id": "602a07d7", |
| 242 | + "metadata": {}, |
| 243 | + "outputs": [], |
| 244 | + "source": [ |
| 245 | + "fig, ax = plt.subplots(subplot_kw={\"projection\": \"3d\"})\n", |
| 246 | + "surf = ax.plot_surface(W1, W2, J,\n", |
| 247 | + " cmap=cm.magma_r,\n", |
| 248 | + " rstride=10, cstride=10,\n", |
| 249 | + " linewidth=0, antialiased=False)\n", |
| 250 | + "ax.plot(w1w2J[0,:], w1w2J[1,:], w1w2J[2,:],\n", |
| 251 | + " 'C0x-', ms=1, zorder=3)\n", |
| 252 | + "ax.set_zlim(-2, 10)\n", |
| 253 | + "ax.set_xlabel(r'$w_1$')\n", |
| 254 | + "ax.set_ylabel(r'$w_2$')\n", |
| 255 | + "ax.set_zlabel(r'$J(w_1,w_2)$')\n", |
| 256 | + "ax.view_init(elev=65, azim=-135, roll=0)\n", |
| 257 | + "fig.colorbar(surf, shrink=0.67, aspect=20)\n", |
| 258 | + "\n", |
| 259 | + "w1w2J[:,-1]" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "markdown", |
| 264 | + "id": "d4021d96", |
| 265 | + "metadata": {}, |
| 266 | + "source": [ |
| 267 | + "## Copyright\n", |
| 268 | + "\n", |
| 269 | + "- the notebooks are provided as [Open Educational Resources](https://en.wikipedia.org/wiki/Open_educational_resources)\n", |
| 270 | + "- feel free to use the notebooks for your own purposes\n", |
| 271 | + "- the text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/)\n", |
| 272 | + "- the code of the IPython examples is licensed under the [MIT license](https://opensource.org/licenses/MIT)\n", |
| 273 | + "- please attribute the work as follows: *Frank Schultz, Data Driven Audio Signal Processing - A Tutorial Featuring Computational Examples, University of Rostock* ideally with relevant file(s), github URL https://github.com/spatialaudio/data-driven-audio-signal-processing-exercise, commit number and/or version tag, year." |
| 274 | + ] |
| 275 | + } |
| 276 | + ], |
| 277 | + "metadata": { |
| 278 | + "kernelspec": { |
| 279 | + "display_name": "myddasp", |
| 280 | + "language": "python", |
| 281 | + "name": "myddasp" |
| 282 | + }, |
| 283 | + "language_info": { |
| 284 | + "codemirror_mode": { |
| 285 | + "name": "ipython", |
| 286 | + "version": 3 |
| 287 | + }, |
| 288 | + "file_extension": ".py", |
| 289 | + "mimetype": "text/x-python", |
| 290 | + "name": "python", |
| 291 | + "nbconvert_exporter": "python", |
| 292 | + "pygments_lexer": "ipython3", |
| 293 | + "version": "3.10.6" |
| 294 | + } |
| 295 | + }, |
| 296 | + "nbformat": 4, |
| 297 | + "nbformat_minor": 5 |
| 298 | +} |
0 commit comments