Skip to content

Commit 252621f

Browse files
committed
Update ddasp_exercise_slides.tex
improved structure with section / subsections
1 parent e7c9285 commit 252621f

File tree

1 file changed

+211
-14
lines changed

1 file changed

+211
-14
lines changed

slides/ddasp_exercise_slides.tex

+211-14
Original file line numberDiff line numberDiff line change
@@ -179,7 +179,9 @@
179179

180180

181181
%\begin{comment}
182-
\section{Ex01: Introduction}
182+
\section{Section I: Introduction}
183+
184+
\subsection{Exercise 01}
183185
\begin{frame}{Ex01: Introduction}
184186
Objectives
185187
\begin{itemize}
@@ -260,9 +262,10 @@ \section{Ex01: Introduction}
260262
\end{frame}
261263

262264

263-
\section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
265+
\section{Section II: SVD / 4 Subspaces / Pseudo-Inverse}
264266

265-
\begin{frame}{Ex02 / Ex03: SVD and 4 Subspaces of a Matrix}
267+
\subsection{Exercise 02}
268+
\begin{frame}{Ex02: Singular Value Decomposition (SVD)}
266269
Objectives
267270
\begin{itemize}
268271
\item recap important matrix factorizations
@@ -275,6 +278,7 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
275278

276279

277280

281+
278282
\begin{frame}{Matrix Factorization from Eigenwert Problem for Square Matrix}
279283

280284
for square matrix $\bm{A}_{M \times M}$ we can have a factorization (known as diagonalization)
@@ -576,8 +580,16 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
576580

577581

578582

583+
\subsection{Exercise 03}
579584

580-
\begin{frame}{Singular Value Decomposition (SVD)}
585+
\begin{frame}{Ex03: SVD and the 4 Matrix Subspaces}
586+
Objectives
587+
\begin{itemize}
588+
\item TBD
589+
\end{itemize}
590+
\end{frame}
591+
592+
\begin{frame}{Ex03: SVD and the 4 Matrix Subspaces}
581593

582594
\begin{flushleft}
583595
$
@@ -1546,8 +1558,17 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
15461558
% \end{frame}
15471559

15481560

1549-
\begin{frame}[t]{Ex04: Recap 4 Subspaces of a Matrix}
1561+
\subsection{Exercise 04}
1562+
1563+
\begin{frame}{Ex04: Solving an Inverse Problem == Finding Model Parameters / Projection Matrices}
1564+
Objectives
1565+
\begin{itemize}
1566+
\item TBD
1567+
\end{itemize}
1568+
\end{frame}
1569+
15501570

1571+
\begin{frame}[t]{Recap 4 Subspaces of a Matrix}
15511572
\hspace{-0.5cm}
15521573
\textcolor{C2}{row space} $\perp$ \textcolor{C1}{null space}
15531574
\hspace{0.5cm}
@@ -1569,7 +1590,7 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
15691590

15701591

15711592

1572-
\begin{frame}[t]{Ex04: Solving an Inverse Problem == Finding Model Parameters}
1593+
\begin{frame}[t]{Solving an Inverse Problem == Finding Model Parameters}
15731594
feature matrix $\bm{X}$ as full column rank with rank $R=2$ (2 independent columns = 2 independent rows = 2 non-zero singular values)
15741595
$$
15751596
\bm{X} =
@@ -2203,8 +2224,17 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
22032224

22042225

22052226

2227+
\subsection{Exercise 05}
22062228

2207-
\begin{frame}[t]{Ex05: Matrix with Large Condition Number}
2229+
\begin{frame}{Ex05: Condition Number / Regularization}
2230+
Objectives
2231+
\begin{itemize}
2232+
\item TBD
2233+
\end{itemize}
2234+
\end{frame}
2235+
2236+
2237+
\begin{frame}[t]{Matrix with Large Condition Number}
22082238
%Square matrix, full rank, thus invertible
22092239
$$
22102240
\bm{X}
@@ -2439,6 +2469,14 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
24392469

24402470

24412471

2472+
\subsection{Exercise 06}
2473+
2474+
\begin{frame}{Ex06: Audio Toy Example for Linear Regression and SVD}
2475+
Objectives
2476+
\begin{itemize}
2477+
\item TBD
2478+
\end{itemize}
2479+
\end{frame}
24422480

24432481
\begin{frame}[t]{Ex06: Audio Toy Example for Linear Regression and SVD}
24442482
\begin{center}
@@ -2480,14 +2518,24 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
24802518

24812519

24822520

2483-
\section{Section II: Feature Design}
2521+
\section{Section III: Feature Design}
24842522

2523+
\subsection{Exercise 07}
24852524
\begin{frame}[t]{Ex07: Audio Features}
24862525
no slides so far
24872526
\end{frame}
24882527

2528+
\subsection{Exercise 08}
2529+
2530+
\begin{frame}{Ex08: Principal Component Analysis (PCA)}
2531+
Objectives
2532+
\begin{itemize}
2533+
\item TBD
2534+
\end{itemize}
2535+
\end{frame}
24892536

2490-
\begin{frame}[t]{Ex08: Principal Component Analysis (PCA)}
2537+
2538+
\begin{frame}[t]{Principal Component Analysis (PCA)}
24912539

24922540
PCA is typically applied on mean-free data
24932541

@@ -2862,12 +2910,14 @@ \section{Section II: Feature Design}
28622910

28632911

28642912

2865-
\section{Section III: Train Models}
2913+
\section{Section IV: Train Models}
2914+
2915+
\subsection{Exercise 09}
28662916
\begin{frame}[t]{Ex 09: Bias-Variance Trade Off}
28672917
no slides so far
28682918
\end{frame}
28692919

2870-
2920+
\subsection{Exercise 10}
28712921
\begin{frame}[t]{Ex 10: Gradient Descent}
28722922
no slides so far
28732923
\end{frame}
@@ -2876,7 +2926,10 @@ \section{Section III: Train Models}
28762926
%\end{comment}
28772927

28782928

2879-
\section{Section IV: Model Architectures}
2929+
\section{Section V: Model Architectures}
2930+
2931+
\subsection{Fundamentals}
2932+
28802933
\begin{frame}[t]{Output Layer for Regression Model}
28812934

28822935
$\cdot$ Output layer exhibits $i=1 \dots K$ perceptrons
@@ -3022,8 +3075,17 @@ \section{Section IV: Model Architectures}
30223075

30233076

30243077

3078+
\subsection{Exercise 11}
30253079

3026-
\begin{frame}[t]{Ex11: Linear Model for XOR (...is not working)}
3080+
\begin{frame}{Ex11: Non-Linear Model Introduction}
3081+
Objectives
3082+
\begin{itemize}
3083+
\item TBD
3084+
\end{itemize}
3085+
\end{frame}
3086+
3087+
3088+
\begin{frame}[t]{Linear Model for XOR (...is not working)}
30273089

30283090
XOR mapping well known as
30293091
\begin{align*}
@@ -3417,6 +3479,14 @@ \section{Section IV: Model Architectures}
34173479

34183480

34193481

3482+
\subsection{Exercise 12}
3483+
3484+
\begin{frame}{Ex12: Binary Classification}
3485+
Objectives
3486+
\begin{itemize}
3487+
\item TBD
3488+
\end{itemize}
3489+
\end{frame}
34203490

34213491
\begin{frame}{Recap: Modeling Non-Linearity with Bias and Activation Function}
34223492
%
@@ -3451,7 +3521,7 @@ \section{Section IV: Model Architectures}
34513521
\end{frame}
34523522

34533523

3454-
\begin{frame}[t]{Ex12 / 13: Binary Classification aka Binary Logistic Regression}
3524+
\begin{frame}[t]{Binary Classification aka Binary Logistic Regression}
34553525

34563526
\begin{center}
34573527
\begin{tikzpicture} %[scale=1.25]
@@ -3843,6 +3913,14 @@ \section{Section IV: Model Architectures}
38433913

38443914

38453915

3916+
\subsection{Exercise 13}
3917+
3918+
\begin{frame}{Ex13: Binary Classification with Hidden Layer Model / Multivariate Chain Rule / Metrics}
3919+
Objectives
3920+
\begin{itemize}
3921+
\item TBD
3922+
\end{itemize}
3923+
\end{frame}
38463924

38473925
\begin{frame}{Binary Classification with Hidden Layer Model}
38483926
%
@@ -4207,8 +4285,16 @@ \section{Section IV: Model Architectures}
42074285

42084286

42094287

4288+
\subsection{Exercise 14}
42104289

42114290
\begin{frame}{Ex14: Multi-Class Classification with Softmax Output Layer}
4291+
Objectives
4292+
\begin{itemize}
4293+
\item TBD
4294+
\end{itemize}
4295+
\end{frame}
4296+
4297+
\begin{frame}{Multi-Class Classification with Softmax Output Layer}
42124298
%
42134299
\begin{flushleft}
42144300
\begin{tikzpicture}[scale=1]
@@ -4718,6 +4804,117 @@ \section{Section IV: Model Architectures}
47184804

47194805

47204806

4807+
4808+
4809+
4810+
4811+
4812+
\begin{frame}{Music Genre Classification with Softmax / Categorical Cross Entropy}
4813+
%
4814+
\begin{center}
4815+
\begin{tikzpicture}[scale=1]
4816+
\tikzstyle{iol}=[draw,shape=rectangle,minimum size=0.7cm]
4817+
\tikzstyle{hl}=[draw,shape=circle,minimum size=1cm]
4818+
\tikzstyle{dl}=[draw,shape=rectangle,minimum size=3.6cm]
4819+
%
4820+
\node[iol](x1) at (0,+1.5){$x_\text{Peak}$};
4821+
\node[iol](x2) at (0,+0.75){$x_\text{RMS dB}$};
4822+
\node[iol](x3) at (0,0){$x_\text{Crest}$};
4823+
\node[iol](xf) at (0,-0.75){$x_:$};
4824+
\node[iol](xF) at (0,-1.5){$x_\text{L/H}$};
4825+
%
4826+
\node at (0,+3){
4827+
$
4828+
y_\text{M}=
4829+
\begin{bmatrix}
4830+
1\\0\\0
4831+
\end{bmatrix},\,
4832+
y_\text{E}=
4833+
\begin{bmatrix}
4834+
0\\1\\0
4835+
\end{bmatrix},\,
4836+
y_\text{C}=
4837+
\begin{bmatrix}
4838+
0\\0\\1
4839+
\end{bmatrix}
4840+
$};
4841+
%
4842+
\node[dl](dl) at (3,0){(Deep) Model: $\bm{a} = \mathcal{M}(\bm{x})$};
4843+
%
4844+
\node[hl](lop1) at (7,+2.67){$\sigma
4845+
%\left(
4846+
(
4847+
\underbrace{{\bm{w}_{\textcolor{C0}{1}\text{o}}^\mathrm{T}\bm{a} + b_{\textcolor{C0}{1}\text{o}}}}_{z_{\textcolor{C0}{1}\text{o}}}
4848+
)
4849+
%\right)
4850+
$};
4851+
\node[hl](lop2) at (7,0){$\sigma\left({\bm{w}_{\textcolor{C3}{2}\text{o}}^\mathrm{T}\bm{a} + b_{\textcolor{C3}{2}\text{o}}}\right)$};
4852+
\node[hl](lop3) at (7,-2.62){$\sigma\left({\bm{w}_{\textcolor{C1}{3}\text{o}}^\mathrm{T}\bm{a} + b_{\textcolor{C1}{3}\text{o}}}\right)$};
4853+
%
4854+
\node[iol](y1) at (9,+2.67){$\hat{y}_\text{M}$};
4855+
\node[iol](y2) at (9,+0){$\hat{y}_\text{E}$};
4856+
\node[iol](y3) at (9,-2.62){$\hat{y}_\text{C}$};
4857+
%
4858+
\draw[->] (x1) -- (dl);
4859+
\draw[->] (x2) -- (dl);
4860+
\draw[->] (x3) -- (dl);
4861+
\draw[->] (xf) -- (dl);
4862+
\draw[->] (xF) -- (dl);
4863+
%
4864+
\draw[->] (dl) -- (lop1);
4865+
\draw[->] (dl) -- (lop2);
4866+
\draw[->] (dl) -- (lop3);
4867+
%
4868+
\draw[->] (lop1) -- (y1);
4869+
\draw[->] (lop2) -- (y2);
4870+
\draw[->] (lop3) -- (y3);
4871+
%
4872+
\end{tikzpicture}
4873+
\end{center}
4874+
%
4875+
\end{frame}
4876+
4877+
4878+
\begin{frame}[t]{Music Genre Classification with Softmax / Categorical Cross Entropy}
4879+
\begin{center}
4880+
$
4881+
\def\K{0.4}
4882+
\def\F{2}
4883+
\def\N{5}
4884+
\def\rank{0.999999}
4885+
\drawmatrix[fill=none, height=\F, width=\N]{X}_\mathtt{F \times N}
4886+
\drawmatrix[fill=none, height=\K, width=\N]{Y}_\mathtt{K \times N}
4887+
$
4888+
\end{center}
4889+
4890+
\only<1>{
4891+
$\cdot$ feature design
4892+
}
4893+
\only<2>{
4894+
\begin{center}
4895+
\begin{tabular}{ c c c }
4896+
training data & validate data & test data\\
4897+
e.g. 50\% & 25\% & 25\%
4898+
\end{tabular}
4899+
\end{center}
4900+
}
4901+
\only<3>{
4902+
\begin{itemize}
4903+
\item randomly split total data into train / dev / test data
4904+
\item find best model(s) by hyper parameter tuning with train / dev data
4905+
\item optionally: combine train / dev data and re-split it to new train / dev data
4906+
\item train best model(s) with train / dev data
4907+
\item check model(s) performance on never before seen test data
4908+
\end{itemize}
4909+
}
4910+
4911+
\end{frame}
4912+
4913+
4914+
4915+
4916+
4917+
47214918
% \section{Ex04: Audio Example, Linear Regression, SVD}
47224919
% \begin{frame}{Ex04: SVD Factorization of Multitrack Audio}
47234920
% Objectives: understanding the essence of SVD vs. utilizing SVD on real data

0 commit comments

Comments
 (0)