179
179
180
180
181
181
% \begin{comment}
182
- \section {Ex01: Introduction }
182
+ \section {Section I: Introduction }
183
+
184
+ \subsection {Exercise 01 }
183
185
\begin {frame }{Ex01: Introduction}
184
186
Objectives
185
187
\begin {itemize }
@@ -260,9 +262,10 @@ \section{Ex01: Introduction}
260
262
\end {frame }
261
263
262
264
263
- \section {Section I : SVD / 4 Subspaces / Pseudo-Inverse }
265
+ \section {Section II : SVD / 4 Subspaces / Pseudo-Inverse }
264
266
265
- \begin {frame }{Ex02 / Ex03: SVD and 4 Subspaces of a Matrix}
267
+ \subsection {Exercise 02 }
268
+ \begin {frame }{Ex02: Singular Value Decomposition (SVD)}
266
269
Objectives
267
270
\begin {itemize }
268
271
\item recap important matrix factorizations
@@ -275,6 +278,7 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
275
278
276
279
277
280
281
+
278
282
\begin {frame }{Matrix Factorization from Eigenwert Problem for Square Matrix}
279
283
280
284
for square matrix $ \bm {A}_{M \times M}$ we can have a factorization (known as diagonalization)
@@ -576,8 +580,16 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
576
580
577
581
578
582
583
+ \subsection {Exercise 03 }
579
584
580
- \begin {frame }{Singular Value Decomposition (SVD)}
585
+ \begin {frame }{Ex03: SVD and the 4 Matrix Subspaces}
586
+ Objectives
587
+ \begin {itemize }
588
+ \item TBD
589
+ \end {itemize }
590
+ \end {frame }
591
+
592
+ \begin {frame }{Ex03: SVD and the 4 Matrix Subspaces}
581
593
582
594
\begin {flushleft }
583
595
$
@@ -1546,8 +1558,17 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
1546
1558
% \end{frame}
1547
1559
1548
1560
1549
- \begin {frame }[t]{Ex04: Recap 4 Subspaces of a Matrix}
1561
+ \subsection {Exercise 04 }
1562
+
1563
+ \begin {frame }{Ex04: Solving an Inverse Problem == Finding Model Parameters / Projection Matrices}
1564
+ Objectives
1565
+ \begin {itemize }
1566
+ \item TBD
1567
+ \end {itemize }
1568
+ \end {frame }
1569
+
1550
1570
1571
+ \begin {frame }[t]{Recap 4 Subspaces of a Matrix}
1551
1572
\hspace {-0.5cm}
1552
1573
\textcolor {C2}{row space} $ \perp $ \textcolor {C1}{null space}
1553
1574
\hspace {0.5cm}
@@ -1569,7 +1590,7 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
1569
1590
1570
1591
1571
1592
1572
- \begin {frame }[t]{Ex04: Solving an Inverse Problem == Finding Model Parameters}
1593
+ \begin {frame }[t]{Solving an Inverse Problem == Finding Model Parameters}
1573
1594
feature matrix $ \bm {X}$ as full column rank with rank $ R=2 $ (2 independent columns = 2 independent rows = 2 non-zero singular values)
1574
1595
$$
1575
1596
\bm {X} =
@@ -2203,8 +2224,17 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
2203
2224
2204
2225
2205
2226
2227
+ \subsection {Exercise 05 }
2206
2228
2207
- \begin {frame }[t]{Ex05: Matrix with Large Condition Number}
2229
+ \begin {frame }{Ex05: Condition Number / Regularization}
2230
+ Objectives
2231
+ \begin {itemize }
2232
+ \item TBD
2233
+ \end {itemize }
2234
+ \end {frame }
2235
+
2236
+
2237
+ \begin {frame }[t]{Matrix with Large Condition Number}
2208
2238
% Square matrix, full rank, thus invertible
2209
2239
$$
2210
2240
\bm {X}
@@ -2439,6 +2469,14 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
2439
2469
2440
2470
2441
2471
2472
+ \subsection {Exercise 06 }
2473
+
2474
+ \begin {frame }{Ex06: Audio Toy Example for Linear Regression and SVD}
2475
+ Objectives
2476
+ \begin {itemize }
2477
+ \item TBD
2478
+ \end {itemize }
2479
+ \end {frame }
2442
2480
2443
2481
\begin {frame }[t]{Ex06: Audio Toy Example for Linear Regression and SVD}
2444
2482
\begin {center }
@@ -2480,14 +2518,24 @@ \section{Section I: SVD / 4 Subspaces / Pseudo-Inverse}
2480
2518
2481
2519
2482
2520
2483
- \section {Section II : Feature Design }
2521
+ \section {Section III : Feature Design }
2484
2522
2523
+ \subsection {Exercise 07 }
2485
2524
\begin {frame }[t]{Ex07: Audio Features}
2486
2525
no slides so far
2487
2526
\end {frame }
2488
2527
2528
+ \subsection {Exercise 08 }
2529
+
2530
+ \begin {frame }{Ex08: Principal Component Analysis (PCA)}
2531
+ Objectives
2532
+ \begin {itemize }
2533
+ \item TBD
2534
+ \end {itemize }
2535
+ \end {frame }
2489
2536
2490
- \begin {frame }[t]{Ex08: Principal Component Analysis (PCA)}
2537
+
2538
+ \begin {frame }[t]{Principal Component Analysis (PCA)}
2491
2539
2492
2540
PCA is typically applied on mean-free data
2493
2541
@@ -2862,12 +2910,14 @@ \section{Section II: Feature Design}
2862
2910
2863
2911
2864
2912
2865
- \section {Section III: Train Models }
2913
+ \section {Section IV: Train Models }
2914
+
2915
+ \subsection {Exercise 09 }
2866
2916
\begin {frame }[t]{Ex 09: Bias-Variance Trade Off}
2867
2917
no slides so far
2868
2918
\end {frame }
2869
2919
2870
-
2920
+ \subsection { Exercise 10 }
2871
2921
\begin {frame }[t]{Ex 10: Gradient Descent}
2872
2922
no slides so far
2873
2923
\end {frame }
@@ -2876,7 +2926,10 @@ \section{Section III: Train Models}
2876
2926
% \end{comment}
2877
2927
2878
2928
2879
- \section {Section IV: Model Architectures }
2929
+ \section {Section V: Model Architectures }
2930
+
2931
+ \subsection {Fundamentals }
2932
+
2880
2933
\begin {frame }[t]{Output Layer for Regression Model}
2881
2934
2882
2935
$ \cdot $ Output layer exhibits $ i=1 \dots K$ perceptrons
@@ -3022,8 +3075,17 @@ \section{Section IV: Model Architectures}
3022
3075
3023
3076
3024
3077
3078
+ \subsection {Exercise 11 }
3025
3079
3026
- \begin {frame }[t]{Ex11: Linear Model for XOR (...is not working)}
3080
+ \begin {frame }{Ex11: Non-Linear Model Introduction}
3081
+ Objectives
3082
+ \begin {itemize }
3083
+ \item TBD
3084
+ \end {itemize }
3085
+ \end {frame }
3086
+
3087
+
3088
+ \begin {frame }[t]{Linear Model for XOR (...is not working)}
3027
3089
3028
3090
XOR mapping well known as
3029
3091
\begin {align* }
@@ -3417,6 +3479,14 @@ \section{Section IV: Model Architectures}
3417
3479
3418
3480
3419
3481
3482
+ \subsection {Exercise 12 }
3483
+
3484
+ \begin {frame }{Ex12: Binary Classification}
3485
+ Objectives
3486
+ \begin {itemize }
3487
+ \item TBD
3488
+ \end {itemize }
3489
+ \end {frame }
3420
3490
3421
3491
\begin {frame }{Recap: Modeling Non-Linearity with Bias and Activation Function}
3422
3492
%
@@ -3451,7 +3521,7 @@ \section{Section IV: Model Architectures}
3451
3521
\end {frame }
3452
3522
3453
3523
3454
- \begin {frame }[t]{Ex12 / 13: Binary Classification aka Binary Logistic Regression}
3524
+ \begin {frame }[t]{Binary Classification aka Binary Logistic Regression}
3455
3525
3456
3526
\begin {center }
3457
3527
\begin {tikzpicture } % [scale=1.25]
@@ -3843,6 +3913,14 @@ \section{Section IV: Model Architectures}
3843
3913
3844
3914
3845
3915
3916
+ \subsection {Exercise 13 }
3917
+
3918
+ \begin {frame }{Ex13: Binary Classification with Hidden Layer Model / Multivariate Chain Rule / Metrics}
3919
+ Objectives
3920
+ \begin {itemize }
3921
+ \item TBD
3922
+ \end {itemize }
3923
+ \end {frame }
3846
3924
3847
3925
\begin {frame }{Binary Classification with Hidden Layer Model}
3848
3926
%
@@ -4207,8 +4285,16 @@ \section{Section IV: Model Architectures}
4207
4285
4208
4286
4209
4287
4288
+ \subsection {Exercise 14 }
4210
4289
4211
4290
\begin {frame }{Ex14: Multi-Class Classification with Softmax Output Layer}
4291
+ Objectives
4292
+ \begin {itemize }
4293
+ \item TBD
4294
+ \end {itemize }
4295
+ \end {frame }
4296
+
4297
+ \begin {frame }{Multi-Class Classification with Softmax Output Layer}
4212
4298
%
4213
4299
\begin {flushleft }
4214
4300
\begin {tikzpicture }[scale=1]
@@ -4718,6 +4804,117 @@ \section{Section IV: Model Architectures}
4718
4804
4719
4805
4720
4806
4807
+
4808
+
4809
+
4810
+
4811
+
4812
+ \begin {frame }{Music Genre Classification with Softmax / Categorical Cross Entropy}
4813
+ %
4814
+ \begin {center }
4815
+ \begin {tikzpicture }[scale=1]
4816
+ \tikzstyle {iol}=[draw,shape=rectangle,minimum size=0.7cm]
4817
+ \tikzstyle {hl}=[draw,shape=circle,minimum size=1cm]
4818
+ \tikzstyle {dl}=[draw,shape=rectangle,minimum size=3.6cm]
4819
+ %
4820
+ \node [iol](x1) at (0,+1.5){$ x_\text {Peak}$ };
4821
+ \node [iol](x2) at (0,+0.75){$ x_\text {RMS dB}$ };
4822
+ \node [iol](x3) at (0,0){$ x_\text {Crest}$ };
4823
+ \node [iol](xf) at (0,-0.75){$ x_:$ };
4824
+ \node [iol](xF) at (0,-1.5){$ x_\text {L/H}$ };
4825
+ %
4826
+ \node at (0,+3){
4827
+ $
4828
+ y_\text {M}=
4829
+ \begin {bmatrix}
4830
+ 1 \\ 0 \\ 0
4831
+ \end {bmatrix},\,
4832
+ y_\text {E}=
4833
+ \begin {bmatrix}
4834
+ 0 \\ 1 \\ 0
4835
+ \end {bmatrix},\,
4836
+ y_\text {C}=
4837
+ \begin {bmatrix}
4838
+ 0 \\ 0 \\ 1
4839
+ \end {bmatrix}
4840
+ $ };
4841
+ %
4842
+ \node [dl](dl) at (3,0){(Deep) Model: $ \bm {a} = \mathcal {M}(\bm {x})$ };
4843
+ %
4844
+ \node [hl](lop1) at (7,+2.67){$ \sigma
4845
+ % \left(
4846
+ (
4847
+ \underbrace {{\bm {w}_{\textcolor {C0}{1}\text {o}}^\mathrm {T}\bm {a} + b_{\textcolor {C0}{1}\text {o}}}}_{z_{\textcolor {C0}{1}\text {o}}}
4848
+ )
4849
+ % \right)
4850
+ $ };
4851
+ \node [hl](lop2) at (7,0){$ \sigma \left ({\bm {w}_{\textcolor {C3}{2}\text {o}}^\mathrm {T}\bm {a} + b_{\textcolor {C3}{2}\text {o}}}\right )$ };
4852
+ \node [hl](lop3) at (7,-2.62){$ \sigma \left ({\bm {w}_{\textcolor {C1}{3}\text {o}}^\mathrm {T}\bm {a} + b_{\textcolor {C1}{3}\text {o}}}\right )$ };
4853
+ %
4854
+ \node [iol](y1) at (9,+2.67){$ \hat {y}_\text {M}$ };
4855
+ \node [iol](y2) at (9,+0){$ \hat {y}_\text {E}$ };
4856
+ \node [iol](y3) at (9,-2.62){$ \hat {y}_\text {C}$ };
4857
+ %
4858
+ \draw [->] (x1) -- (dl);
4859
+ \draw [->] (x2) -- (dl);
4860
+ \draw [->] (x3) -- (dl);
4861
+ \draw [->] (xf) -- (dl);
4862
+ \draw [->] (xF) -- (dl);
4863
+ %
4864
+ \draw [->] (dl) -- (lop1);
4865
+ \draw [->] (dl) -- (lop2);
4866
+ \draw [->] (dl) -- (lop3);
4867
+ %
4868
+ \draw [->] (lop1) -- (y1);
4869
+ \draw [->] (lop2) -- (y2);
4870
+ \draw [->] (lop3) -- (y3);
4871
+ %
4872
+ \end {tikzpicture }
4873
+ \end {center }
4874
+ %
4875
+ \end {frame }
4876
+
4877
+
4878
+ \begin {frame }[t]{Music Genre Classification with Softmax / Categorical Cross Entropy}
4879
+ \begin {center }
4880
+ $
4881
+ \def\K {0.4}
4882
+ \def\F {2}
4883
+ \def\N {5}
4884
+ \def\rank {0.999999}
4885
+ \drawmatrix [fill=none, height=\F , width=\N ]{X}_\mathtt {F \times N}
4886
+ \drawmatrix [fill=none, height=\K , width=\N ]{Y}_\mathtt {K \times N}
4887
+ $
4888
+ \end {center }
4889
+
4890
+ \only <1>{
4891
+ $ \cdot $ feature design
4892
+ }
4893
+ \only <2>{
4894
+ \begin {center }
4895
+ \begin {tabular }{ c c c }
4896
+ training data & validate data & test data\\
4897
+ e.g. 50\% & 25\% & 25\%
4898
+ \end {tabular }
4899
+ \end {center }
4900
+ }
4901
+ \only <3>{
4902
+ \begin {itemize }
4903
+ \item randomly split total data into train / dev / test data
4904
+ \item find best model(s) by hyper parameter tuning with train / dev data
4905
+ \item optionally: combine train / dev data and re-split it to new train / dev data
4906
+ \item train best model(s) with train / dev data
4907
+ \item check model(s) performance on never before seen test data
4908
+ \end {itemize }
4909
+ }
4910
+
4911
+ \end {frame }
4912
+
4913
+
4914
+
4915
+
4916
+
4917
+
4721
4918
% \section{Ex04: Audio Example, Linear Regression, SVD}
4722
4919
% \begin{frame}{Ex04: SVD Factorization of Multitrack Audio}
4723
4920
% Objectives: understanding the essence of SVD vs. utilizing SVD on real data
0 commit comments