You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Such a model has $N$\underline{model parameters} $\bm{\theta} = [\theta_1, \theta_2\dots\theta_N]^T$ and one \underline{hyper parameter} $\textcolor{C0}{\lambda}$ to be learned from the data $\bm{y}_{M \times 1}$ and the feature matrix $\bm{X}_{M \times N}$ with full column rank $R=N$.
2536
2579
2537
2580
\end{frame}
2538
2581
2582
+
\begin{frame}[t]{Normal Equations of Tikhonov Regularization in SDV Domain}
\begin{frame}{Ex06: Audio Toy Example for Linear Regression and SVD}
2576
-
Consider the following linear combinations
2577
-
$$\bm{X} \bm{\theta} + \bm{\nu} = \bm{y}$$
2578
-
where $\bm{\theta}=[\theta_1, \theta_2, \theta_3, ..., \theta_{F}]^\mathrm{T}$ are typical variables for the model parameter vector.
2613
+
% \subsection{Exercise 06}
2579
2614
%
2580
-
\begin{itemize}
2581
-
\item$\bm{X}_{N \times F}$ matrix with $N$ audio samples for each column, $f$-th column represents the $f$-th audiotrack / feature
2582
-
\item$\bm{\theta}_{F \times 1}$ column vector of scalar values that represent a dedicated gain for each audiotrack
2583
-
\item$\bm{\nu}_{N \times 1}$ column vector that represents an $N$-sample long noise signal added to the mixdown $\bm{X} \bm{\theta}$
2584
-
\item$\bm{y}_{N \times 1}$ audio signal with $N$ samples as a result of the linear model's linear combination plus noise
2585
-
\end{itemize}
2615
+
% \begin{frame}{Ex06: Audio Toy Example for Linear Regression and SVD}
2616
+
% Objectives
2617
+
% \begin{itemize}
2618
+
% \item audio multitrack data (stems) arranged as data matrix
2619
+
% \item the SVD of this matrix allows to listen to the U space, i.e. to the orthogonal audio signals (which is some source separation approach)
2620
+
% \item try to find the mixing gains of a mix that is corrupted by noise
2621
+
% \end{itemize}
2622
+
% \end{frame}
2586
2623
%
2587
-
Let us assume that a) we know $\bm{X}$ (i.e. the individual audio tracks) and $\bm{y}$ (i.e. the noise-corrupted final mixdown), b) that we do not know the noise $\bm{\nu}$ and c) that we want to estimate the 'real world' mixing gains $\bm{\theta}$
2588
-
\end{frame}
2624
+
% \begin{frame}[t]{Ex06: Audio Toy Example for Linear Regression and SVD}
% \begin{frame}{Ex06: Audio Toy Example for Linear Regression and SVD}
2648
+
% Consider the following linear combinations
2649
+
% $$\bm{X} \bm{\theta} + \bm{\nu} = \bm{y}$$
2650
+
% where $\bm{\theta}=[\theta_1, \theta_2, \theta_3, ..., \theta_{F}]^\mathrm{T}$ are typical variables for the model parameter vector.
2651
+
% %
2652
+
% \begin{itemize}
2653
+
% \item $\bm{X}_{N \times F}$ matrix with $N$ audio samples for each column, $f$-th column represents the $f$-th audiotrack / feature
2654
+
% \item $\bm{\theta}_{F \times 1}$ column vector of scalar values that represent a dedicated gain for each audiotrack
2655
+
% \item $\bm{\nu}_{N \times 1}$ column vector that represents an $N$-sample long noise signal added to the mixdown $\bm{X} \bm{\theta}$
2656
+
% \item $\bm{y}_{N \times 1}$ audio signal with $N$ samples as a result of the linear model's linear combination plus noise
2657
+
% \end{itemize}
2658
+
% %
2659
+
% Let us assume that a) we know $\bm{X}$ (i.e. the individual audio tracks) and $\bm{y}$ (i.e. the noise-corrupted final mixdown), b) that we do not know the noise $\bm{\nu}$ and c) that we want to estimate the 'real world' mixing gains $\bm{\theta}$
0 commit comments