|
158 | 158 | "## Textbook Recommendations\n",
|
159 | 159 | "Machine Learning (ML) using linear / non-linear models is a vivid topic and dozens of textbooks will be released each year.\n",
|
160 | 160 | "The following textbook recommendations are very often referenced in the field and brilliant to learn with. \n",
|
| 161 | + "- Kevin P. **Murphy**: *Probabilistic Machine Learning: An Introduction*, MIT Press, 1st. ed. [open source book and current draft as free pdf](https://probml.github.io/pml-book/book1.html)\n", |
| 162 | + "- J.A. **Fessler**, R.R. **Nadakuditi**: *Linear Algebra for Data Science, Machine Learning, and Signal Processing*, Cambridge University Press, 2024, 1st ed. [online ebook](https://ebookcentral.proquest.com/lib/ubrostock-ebooks/detail.action?docID=31691281)\n", |
161 | 163 | "- Sebastian **Raschka**, Yuxi Liu, Vahid Mirjalili: *Machine Learning with PyTorch and Scikit-Learn*, Packt, 2022, 1st ed.\n",
|
162 | 164 | "- Gilbert **Strang**: *Linear Algebra and Learning from Data*, Wellesley, 2019, consider to buy your own copy of this brilliant book\n",
|
163 | 165 | "- Gareth **James**, Daniela Witten, Trevor Hastie, Rob Tibshirani: *An Introduction to Statistical Learning* with Applications in R, Springer, 2nd ed., 2021, [free pdf e-book](https://www.statlearning.com/)\n",
|
164 | 166 | "- Trevor **Hastie**, Robert Tibshirani, Jerome Friedman: *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*, Springer, 2nd ed., 2009, [free pdf e-book](https://hastie.su.domains/ElemStatLearn/)\n",
|
165 | 167 | "- Sergios **Theodoridis**: *Machine Learning*, Academic Press, 2nd ed., 2020, check your university library service for free pdf e-book\n",
|
166 |
| - "- Kevin P. **Murphy**: *Probabilistic Machine Learning: An Introduction*, MIT Press, 1st. ed. [open source book and current draft as free pdf](https://probml.github.io/pml-book/book1.html)\n", |
167 | 168 | "- Ian **Goodfellow**, Yoshua Bengio, Aaron Courville: *Deep Learning*, MIT Press, 2016\n",
|
168 | 169 | "- Marc Peter **Deisenroth**, A. Aldo Faisal, Cheng Soon Ong: *Mathemathics for Machine Learning*, Cambridge University Press, 2020, [free pdf e-book](https://mml-book.github.io/)\n",
|
169 | 170 | "- Steven L. **Brunton**, J. Nathan Kutz: *Data Driven Science & Engineering - Machine Learning, Dynamical Systems, and Control*, Cambridge University Press, 2020, [free pdf of draft](http://www.databookuw.com/databook.pdf), see also the [video lectures](http://www.databookuw.com/) and [Python tutorials](https://github.com/dylewsky/Data_Driven_Science_Python_Demos)\n",
|
170 | 171 | "- Aurélien **Géron**: *Hands-on machine learning with Scikit-Learn, Keras and TensorFlow*. O’Reilly, 2nd ed., 2019, [Python tutorials](https://github.com/ageron/handson-ml2)\n",
|
171 | 172 | "\n",
|
172 |
| - "ML deals with stuff that is actually known for decades (at least the linear modeling part of it), so if we are really serious about to learn ML deeply, we should think over concepts on statistical signal processing, maximum-likelihood, Bayesian vs. frequentist statistics, generalized linear models, hierarchical models...For these topics we could check these respected textbooks\n", |
173 |
| - "- L. **Fahrmeir**, A. Hamerle, and G. Tutz, Multivariate statistische Verfahren, 2nd ed. de Gruyter, 1996.\n", |
174 |
| - "- L. **Fahrmeir**, T. Kneib, S. Lang, and B. D. Marx, Regression, 2nd ed. Springer, 2021.\n", |
175 |
| - "- A. J. **Dobson** and A. G. Barnett, An Introduction to Generalized Linear Models, 4th ed. CRC Press, 2018.\n", |
176 |
| - "- H. **Madsen**, P. Thyregod, Introduction to General and Generalized Linear Models, CRC Press, 2011.\n", |
177 |
| - "- A. **Agresti**, Foundations of Linear and Generalized Models, Wiley, 2015" |
| 173 | + "ML deals with stuff that is actually known for decades (at least the linear modeling part of it), so if we are really serious about to learn ML deeply, we should elaborate concepts on statistical signal processing, maximum-likelihood, Bayesian vs. frequentist statistics, generalized linear models, hierarchical models...For these topics we could check these respected textbooks\n", |
| 174 | + "- L. **Fahrmeir**, A. Hamerle, and G. Tutz, *Multivariate statistische Verfahren*, 2nd ed. de Gruyter, 1996.\n", |
| 175 | + "- L. **Fahrmeir**, T. Kneib, S. Lang, and B. D. Marx, *Regression*, 2nd ed. Springer, 2021.\n", |
| 176 | + "- A. J. **Dobson** and A. G. Barnett, *An Introduction to Generalized Linear Models*, 4th ed. CRC Press, 2018.\n", |
| 177 | + "- J. F. **Monahan**, *A Primer on Linear Models*, CRC Press, 2008.\n", |
| 178 | + "- H. **Madsen**, P. Thyregod, *Introduction to General and Generalized Linear Models*, CRC Press, 2011.\n", |
| 179 | + "- A. **Agresti**, *Foundations of Linear and Generalized Models*, Wiley, 2015" |
178 | 180 | ]
|
179 | 181 | },
|
180 | 182 | {
|
|
0 commit comments