|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "Sascha Spors,\n", |
| 8 | + "Professorship Signal Theory and Digital Signal Processing,\n", |
| 9 | + "Institute of Communications Engineering (INT),\n", |
| 10 | + "Faculty of Computer Science and Electrical Engineering (IEF),\n", |
| 11 | + "University of Rostock,\n", |
| 12 | + "Germany\n", |
| 13 | + "\n", |
| 14 | + "# Data Driven Audio Signal Processing - A Tutorial with Computational Examples\n", |
| 15 | + "\n", |
| 16 | + "Winter Semester 2024/25 (Master Course #24512)\n", |
| 17 | + "\n", |
| 18 | + "- lecture: https://github.com/spatialaudio/data-driven-audio-signal-processing-lecture\n", |
| 19 | + "- tutorial: https://github.com/spatialaudio/data-driven-audio-signal-processing-exercise\n", |
| 20 | + "\n", |
| 21 | + "Feel free to contact lecturer [email protected]" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "markdown", |
| 26 | + "metadata": {}, |
| 27 | + "source": [ |
| 28 | + "# Exercise 5: Linear Regression Toy Example\n", |
| 29 | + "\n", |
| 30 | + "## Objectives\n", |
| 31 | + "\n", |
| 32 | + "When no assumption on an underlying data generation process is being made, pure linear algebra is used to solve for model parameters. Hence, we should link\n", |
| 33 | + "- linear regression model (simple line fit)\n", |
| 34 | + "- left inverse of a tall / thin, full column (feature) matrix\n", |
| 35 | + "- (residual) least squares\n", |
| 36 | + "- projection matrices to the 4 subspaces\n", |
| 37 | + "\n", |
| 38 | + "to the very same playground using the following simple toy example." |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": null, |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "import matplotlib.pyplot as plt\n", |
| 48 | + "import numpy as np\n", |
| 49 | + "from scipy.linalg import svd, diagsvd, inv, pinv, norm\n", |
| 50 | + "from numpy.linalg import matrix_rank" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": null, |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
| 59 | + "X = np.array([[1, 1],\n", |
| 60 | + " [1, 2],\n", |
| 61 | + " [1, 3],\n", |
| 62 | + " [1, 4]])\n", |
| 63 | + "print(X, X.shape, matrix_rank(X))\n", |
| 64 | + "y_col = np.array([[1],\n", |
| 65 | + " [3],\n", |
| 66 | + " [5],\n", |
| 67 | + " [7]])\n", |
| 68 | + "print(y_col, y_col.shape)\n", |
| 69 | + "[U, s, Vh] = svd(X)\n", |
| 70 | + "V = Vh.T\n", |
| 71 | + "y_left_null = (-U[:,2]+U[:,3])[:, None] # [:, None] makes it a (4,1) array\n", |
| 72 | + "print(y_left_null, y_left_null.shape)\n", |
| 73 | + "y = y_col + y_left_null\n", |
| 74 | + "print(y, y.shape)\n", |
| 75 | + "M, N = X.shape\n", |
| 76 | + "print(M, N)" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "code", |
| 81 | + "execution_count": null, |
| 82 | + "metadata": {}, |
| 83 | + "outputs": [], |
| 84 | + "source": [ |
| 85 | + "y_col.T @ y_left_null # column space is ortho to left null space" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "code", |
| 90 | + "execution_count": null, |
| 91 | + "metadata": {}, |
| 92 | + "outputs": [], |
| 93 | + "source": [ |
| 94 | + "# magnitudes of vectors\n", |
| 95 | + "np.sqrt(y_col.T @ y_col), np.sqrt(y_left_null.T @ y_left_null)" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "metadata": {}, |
| 102 | + "outputs": [], |
| 103 | + "source": [ |
| 104 | + "X.T @ X # this is full rank -> invertible" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": null, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "inv(X.T @ X)" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "code", |
| 118 | + "execution_count": null, |
| 119 | + "metadata": {}, |
| 120 | + "outputs": [], |
| 121 | + "source": [ |
| 122 | + "# left inverse for tall/thin, full column rank X\n", |
| 123 | + "Xli = inv(X.T @ X) @ X.T\n", |
| 124 | + "Xli" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": null, |
| 130 | + "metadata": {}, |
| 131 | + "outputs": [], |
| 132 | + "source": [ |
| 133 | + "# left inverse via SVD option 1 -> invert singular values & reverse space mapping: U -> V\n", |
| 134 | + "S = diagsvd(s, M, N)\n", |
| 135 | + "Sli = inv(S.T @ S) @ S.T\n", |
| 136 | + "Xli_svd_1 = V @ Sli @ U.T" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": null, |
| 142 | + "metadata": {}, |
| 143 | + "outputs": [], |
| 144 | + "source": [ |
| 145 | + "# left inverse via SVD option 2 -> invert singular values & reverse space mapping: U -> V\n", |
| 146 | + "# s / s^2 = 1 / s might be nicer seen here\n", |
| 147 | + "Xli_svd_2 = V @ diagsvd(s / s**2, N, M) @ U.T\n", |
| 148 | + "\n", |
| 149 | + "np.allclose(Xli_svd_2, Xli_svd_1), np.allclose(Xli, Xli_svd_1), np.allclose(Xli, pinv(X))" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": null, |
| 155 | + "metadata": {}, |
| 156 | + "outputs": [], |
| 157 | + "source": [ |
| 158 | + "theta_hat = Xli @ y # it is rarely called that way in this context, but: we actually train a model with this operation\n", |
| 159 | + "theta_hat # fitted / trained model parameters" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": null, |
| 165 | + "metadata": {}, |
| 166 | + "outputs": [], |
| 167 | + "source": [ |
| 168 | + "Xli @ y_col # we get same theta_hat if using only column space stuff of y " |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "metadata": {}, |
| 175 | + "outputs": [], |
| 176 | + "source": [ |
| 177 | + "Xli @ y_left_null # this must yield zero, as X cannot bring left null to row space" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": null, |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "y_hat = X @ theta_hat\n", |
| 187 | + "y_hat # == y_col" |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": null, |
| 193 | + "metadata": {}, |
| 194 | + "outputs": [], |
| 195 | + "source": [ |
| 196 | + "e = y - y_hat # e == y_lns\n", |
| 197 | + "e, e.T @ e" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": null, |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [], |
| 205 | + "source": [ |
| 206 | + "y_col.T @ e # column space is ortho to left null space" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "execution_count": null, |
| 212 | + "metadata": {}, |
| 213 | + "outputs": [], |
| 214 | + "source": [ |
| 215 | + "# projection matrices\n", |
| 216 | + "\n", |
| 217 | + "P_col = X @ Xli\n", |
| 218 | + "P_col, P_col @ y, y_col" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "code", |
| 223 | + "execution_count": null, |
| 224 | + "metadata": {}, |
| 225 | + "outputs": [], |
| 226 | + "source": [ |
| 227 | + "# check projection in terms of SVD\n", |
| 228 | + "S @ Sli, np.allclose(U @ S @ Sli @ U.T, P_col)" |
| 229 | + ] |
| 230 | + }, |
| 231 | + { |
| 232 | + "cell_type": "code", |
| 233 | + "execution_count": null, |
| 234 | + "metadata": {}, |
| 235 | + "outputs": [], |
| 236 | + "source": [ |
| 237 | + "P_left_null = np.eye(M) - P_col\n", |
| 238 | + "P_left_null, P_left_null @ y, e" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": null, |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [], |
| 246 | + "source": [ |
| 247 | + "P_row = Xli @ X # == always identity matrix for full column rank X\n", |
| 248 | + "P_row, P_row @ theta_hat" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "code", |
| 253 | + "execution_count": null, |
| 254 | + "metadata": {}, |
| 255 | + "outputs": [], |
| 256 | + "source": [ |
| 257 | + "# check projection in terms of SVD\n", |
| 258 | + "Sli @ S, np.allclose(V @ Sli @ S @ V.T, P_row)" |
| 259 | + ] |
| 260 | + }, |
| 261 | + { |
| 262 | + "cell_type": "code", |
| 263 | + "execution_count": null, |
| 264 | + "metadata": {}, |
| 265 | + "outputs": [], |
| 266 | + "source": [ |
| 267 | + "P_null = np.eye(N) - P_row # == always zero matrix for full column rank X\n", |
| 268 | + "P_null # null space is spanned only by zero vector" |
| 269 | + ] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "code", |
| 273 | + "execution_count": null, |
| 274 | + "metadata": {}, |
| 275 | + "outputs": [], |
| 276 | + "source": [ |
| 277 | + "plt.figure(figsize=(8,4))\n", |
| 278 | + "\n", |
| 279 | + "# residuals\n", |
| 280 | + "for m in range(M):\n", |
| 281 | + " plt.plot([X[m, 1], X[m, 1]],\n", |
| 282 | + " [y[m, 0], y_col[m, 0]], lw=3, label='error '+str(m+1))\n", |
| 283 | + "# data\n", |
| 284 | + "plt.plot(X[:,1], y, 'C4x',\n", |
| 285 | + " ms=10, mew=3,\n", |
| 286 | + " label='data')\n", |
| 287 | + "# fitted line\n", |
| 288 | + "plt.plot(X[:,1], theta_hat[0] * X[:,0] + theta_hat[1] * X[:,1], 'k', label='LS fit (interpolation)')\n", |
| 289 | + "x = np.linspace(0, 1, 10)\n", |
| 290 | + "plt.plot(x, theta_hat[0] + theta_hat[1] * x, 'C7:', label='LS fit (extrapolation)')\n", |
| 291 | + "x = np.linspace(4, 5, 10)\n", |
| 292 | + "plt.plot(x, theta_hat[0] + theta_hat[1] * x, 'C7:')\n", |
| 293 | + "\n", |
| 294 | + "plt.xticks(np.arange(6))\n", |
| 295 | + "plt.yticks(np.arange(11)-1)\n", |
| 296 | + "plt.xlim(0, 5)\n", |
| 297 | + "plt.ylim(-1, 9)\n", |
| 298 | + "plt.xlabel('feature x1')\n", |
| 299 | + "plt.ylabel('y')\n", |
| 300 | + "plt.title(r'min the sum of squared errors solves for $\\hat{\\theta}=[-1,2]^T$ -> intercept: -1, slope: +2')\n", |
| 301 | + "plt.legend()\n", |
| 302 | + "plt.grid(True)" |
| 303 | + ] |
| 304 | + }, |
| 305 | + { |
| 306 | + "cell_type": "markdown", |
| 307 | + "metadata": {}, |
| 308 | + "source": [ |
| 309 | + "## Copyright\n", |
| 310 | + "\n", |
| 311 | + "- the notebooks are provided as [Open Educational Resources](https://en.wikipedia.org/wiki/Open_educational_resources)\n", |
| 312 | + "- the text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/)\n", |
| 313 | + "- the code of the IPython examples is licensed under the [MIT license](https://opensource.org/licenses/MIT)\n", |
| 314 | + "- feel free to use the notebooks for your own purposes\n", |
| 315 | + "- please attribute the work as follows: *Frank Schultz, Data Driven Audio Signal Processing - A Tutorial Featuring Computational Examples, University of Rostock* ideally with relevant file(s), github URL https://github.com/spatialaudio/data-driven-audio-signal-processing-exercise, commit number and/or version tag, year." |
| 316 | + ] |
| 317 | + } |
| 318 | + ], |
| 319 | + "metadata": { |
| 320 | + "kernelspec": { |
| 321 | + "display_name": "myddasp", |
| 322 | + "language": "python", |
| 323 | + "name": "python3" |
| 324 | + }, |
| 325 | + "language_info": { |
| 326 | + "codemirror_mode": { |
| 327 | + "name": "ipython", |
| 328 | + "version": 3 |
| 329 | + }, |
| 330 | + "file_extension": ".py", |
| 331 | + "mimetype": "text/x-python", |
| 332 | + "name": "python", |
| 333 | + "nbconvert_exporter": "python", |
| 334 | + "pygments_lexer": "ipython3", |
| 335 | + "version": "3.12.3" |
| 336 | + } |
| 337 | + }, |
| 338 | + "nbformat": 4, |
| 339 | + "nbformat_minor": 4 |
| 340 | +} |
0 commit comments