Skip to content

Empower your data science workflows with Kotlin's type safety and expressiveness—now in Jupyter notebooks.

License

Notifications You must be signed in to change notification settings

sk-ai-net/skainet-jupyter

Repository files navigation

skainet jupyter

Empower your deep machine learning data science workflows with Kotlin’s type safety and expressiveness in Jupyter notebooks.

Overview

skainet is an open-source deep learning framework written in Kotlin, designed with developers in mind to enable the creation of modern AI-powered applications with ease. It seamlessly integrates with Jupyter notebooks, providing a powerful environment for interactive data analysis, machine learning experimentation, and model development.

Features

  • Full Kotlin language support in Jupyter notebooks

  • Interactive data visualization capabilities

  • Seamless integration with popular ML libraries

  • Type-safe data manipulation

  • Rich markdown and documentation support

Using with Jupyter Notebook

Option 1: IntelliJ IDEA

You can create Kotlin notebooks directly in IntelliJ IDEA using one of these methods:

  1. Within a Project:

    • Right-click on source root/folder in Project view

    • Select NewKotlin Notebook

  2. Scratch Notebook:

    • Press kbd:[Cmd+Shift+N] (macOS) or kbd:[Ctrl+Alt+Shift+Insert] (Windows/Linux)

    • Select Kotlin Notebook

  3. From Welcome Screen:

    • Navigate to Kotlin Notebooks tab

    • Click New Notebook

Option 2: Jupyter Installation

  1. Install Jupyter and Kotlin Kernel:

    $ pip install jupyter
    $ jupyter kernelspec install kotlin
  2. Create a New Notebook:

    • Launch Jupyter: jupyter notebook

    • Select "New" → "Kotlin"

  3. Basic Usage:

    // Import skainet libraries
    import ai.tribit.skainet.*
    
    // Example code
    val data = DataFrame.readCsv("data.csv")
    data.head(5).show()

Here’s a concise instruction snippet for setting up dependencies in Gradle KTS to consume your open-source project:

Usage:

  1. Configure repository Add the following to your project’s build.gradle.kts:

repositories {
    maven {
        url = uri("https://maven.pkg.github.com/sk-ai-net/skainet")
        credentials {
            username = providers.gradleProperty("gpr.user")
                .orElse(System.getenv("GITHUB_ACTOR"))
                .get()
            password = providers.gradleProperty("gpr.token")
                .orElse(System.getenv("GITHUB_TOKEN"))
                .get()
        }
    }
}
  1. Set GitHub credentials Ensure you provide your GitHub username (gpr.user) and a personal access token (gpr.token) with package read permission.

About

Empower your data science workflows with Kotlin's type safety and expressiveness—now in Jupyter notebooks.

Resources

License

Stars

Watchers

Forks

Packages

 
 
 

Contributors 2

  •  
  •