Skip to content

shinokumura/thermaldata

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Thermal-Resonance Range Information Table

This repository contains a working version of the thermal neutron reaction cross-section data table generated by the EXFOR parser.

General Information

  • Each directory (n-a, n-el, n-f, n-g, n-p, and n-tot) contains reaction cross-section data for the respective reactions: (n,a), (n,el), (n,f), (n,g), (n,p), and (n,total). These data are extracted from the EXFOR Master using the EXFOR parser.
  • The EXFOR data version used is v20250113.0.
  • The incident neutron energy range is 0.0235 eV +/- 0.001 eV.
  • The EXFOR data table includes the following columns:
    • EXFOR ID: EXFOR entry number (5-digit) - subentry number (3-digit) - pointer number (1-digit), e.g., 12345-002-0.
    • First author: Name of the first author.
    • Year: Year of publication.
    • en_inc: Incident neutron energy.
    • den_inc: Data error of the incident neutron energy.
    • data: Cross-section in barns.
    • ddata: Data error of the cross-section in barns.
    • sf8: Reaction modifiers. See details for Modifiers in EXFOR dictionary - diction:34.
    • sf9: Data type. See details for data types difined in EXFOR dictionary diction:35.

Download all files

By Git command

Clone the repository from a terminal using:

git clone https://github.com/shinokumura/thermaldata.git

Download as Zip File

Download from this link.

EXAMPLE

3-LI-6.txt (n,g)

# Header: 
#   title: 3-LI-6(N,G) thermal cross section 
#   source: EXFOR 
#   date created: 2025-01-22 
# Target: 
#   Z: 3 
#   A: 6 
#   Nuclide: 3-LI-6 
# Reaction: 
#   Type: N,G 
#   Incident energy       : 2.5300e-08 MeV - 2.5300e-08 MeV 
# Residual: 
#   Z: 3 
#   A: 7 
#   Nuclide: 3-LI-7
# Statistics:
#   Thermal Simple Mean       |  Simple Stdev        : 3.93000E-02  |           NAN   (N = 1)
#   Thermal Weighted Mean    +/- Weighted Error      :         NAN +/-          NAN   (N = 1)
#   MXW Simple Mean           |  Simple Stdev        : 4.80000E-02  |           NAN   (N = 1)
#   MXW Weighted Mean        +/- Weighted Error      :         NAN +/-          NAN   (N = 1)
#   SPA Simple Mean           |  Simple Stdev        : 3.47333E-02  |   5.84494E-03   (N = 3)
#   SPA Weighted Mean        +/- Weighted Error      : 3.74321E-02 +/-  2.06736E-03   (N = 3)
#
# Data Table
#   Experimental Data
# EXFOR ID          First Author            Year   En_inc       dEn_inc      Data         dData         sf8    sf9
31768-023-0         R.B.Firestone           2016   2.5300E-08   0.0000E+00   3.9300E-02   7.0000E-04                
22510-002-0         L.Jarczyk               1961   2.5300E-08   0.0000E+00   4.8000E-02   1.5000E-02     MXW        
11014-002-0         G.A.Bartholomew         1957   2.5300E-08   0.0000E+00   2.8000E-02   8.0000E-03     SPA        
13879-002-0         E.T.Jurney              1973   2.5300E-08   0.0000E+00   3.8500E-02   3.0000E-03     SPA        
31570-003-0         Chang Su Park           2006   2.5300E-08   0.0000E+00   3.7700E-02   3.0537E-03     SPA        
# ------------------
#   Recom./Eval./Deriv./Calc. Data
# EXFOR ID          First Author            Year   En_inc       dEn_inc      Data         dData         sf8    sf9
V1001-011-1         S.F.Mughabghab          2006   2.5300E-08   0.0000E+00   3.8500E-02   3.0000E-03           RECOM
# ------------------
#

Statistical Analysis Methodology

The dataset was analyzed to calculate the mean and its associated uncertainty using the following methods:

1. Simple Mean and Standard Deviation

  • Simple Mean ($ \mu $):
    $ \mu = \frac{1}{N} \sum_{i=1}^N x_i $,

    where $ N $ is the total number of data points, and $ x_i $ is each data value. This value was obtained by pandas.DataFrame.mean.

  • Standard Deviation ($ \sigma $):
    $ \sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \mu)^2} $

    The standard deviation was also calculated by pandas.DataFrame.std.

2. Weighted Mean and Its Uncertainty

For entries with valid errors ($ d_i > 0 $), the weighted mean and its uncertainty were calculated:

  • Weighted Mean ($ \mu_w $):
    $ \mu_w = \frac{\sum_{i=1}^N w_i x_i}{\sum_{i=1}^N w_i} $ where $ w_i = \frac{1}{d_i^2} $ is the weight based on the inverse square of the error $ d_i $.

  • Uncertainty of Weighted Mean ($ \sigma_w $):
    $ \sigma_w = \sqrt{\frac{1}{\sum_{i=1}^N w_i}} $

Notes

  • Dataset with zero uncertainty ($ d_i = 0 $) (where the original EXFOR entry does not have DATA-ERR) were excluded from the weighted calculations.

22 Jan., 2025 Shin

About

New thermal-resonance ranges information table

Resources

Stars

Watchers

Forks

Packages

No packages published