-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParkinsonsKaggle.py
436 lines (351 loc) · 18.2 KB
/
ParkinsonsKaggle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 29 09:30:35 2023
@author: danikiyasseh
"""
import tensorflow as tf
import pandas as pd
import numpy as np
import os
from sklearn.preprocessing import MultiLabelBinarizer, LabelEncoder
from collections import defaultdict
import random
from tqdm import tqdm
import pickle
import copy
import scipy
CATEGORIES = ['StartHesitation','Turn','Walking'] # 3 classes
FEATNAMES = ['AccV','AccML','AccAP']
mlb = MultiLabelBinarizer()
lenc = LabelEncoder()
mlb.fit([CATEGORIES])
lenc.fit(CATEGORIES)
SAVE_DIR = '/kaggle/working/'
DATASOURCE = 'lab' # options: lab | realworld | lab_and_realworld
TASK = 'binary' # options: binary | multiclass
SAMPLES = 192 # lab = 192
jump = 38 # lab = 38 (80% overlap)
#gpus = tf.config.list_physical_devices('GPU')
#tf.config.experimental.set_memory_growth(gpus[0], True)
#%%
# populate dataframe only with data associated with labels (0, 1, 2) for the 3 classes
def get_multiclass_df(FILENAMES,metadata_df):
df = pd.DataFrame()
for filename in tqdm(FILENAMES):
data = pd.read_csv(filename)
nevents = data[CATEGORIES].sum().sum()
if nevents == 0: # skip if subject has no event whatsoever
continue
labels = mlb.inverse_transform(np.array(data[CATEGORIES])) # returns class tuple
eventId = filename.split('/')[-1].split('.csv')[0]
subjectId = metadata_df[metadata_df['Id']==eventId]['Subject'].item()
subjectId = eventId
for category in CATEGORIES:
condition = data[category]==1
category_df = data[FEATNAMES][condition]
category_df['label'] = lenc.transform(pd.DataFrame(labels)[condition].iloc[:,0])
category_df['subject'] = subjectId
category_df['series'] = eventId
category_df.reset_index(inplace=True,drop=True)
df = pd.concat((df,category_df),0)
df['label'] = df['label'].astype(int)
return df
#%%
# obtain samples for the background class
#events_df = pd.read_csv('/home/danikiyasseh/datasets/tlvmc-parkinsons-freezing-gait-prediction/events.csv')
def get_background_df(FILENAMES,metadata_df):
background_df = pd.DataFrame()
for filename in tqdm(FILENAMES):
data = pd.read_csv(filename)
labels = [-1]*data.shape[0]
eventId = filename.split('/')[-1].split('.csv')[0]
subjectId = metadata_df[metadata_df['Id']==eventId]['Subject'].item()
subjectId = eventId
condition = ~data[CATEGORIES].any(axis=1)
category_df = data[FEATNAMES][condition]
category_df['label'] = pd.DataFrame(labels)[condition]
category_df['subject'] = subjectId
category_df['series'] = eventId
category_df.reset_index(inplace=True,drop=True)
background_df = pd.concat((background_df,category_df),0)
background_df['label'] = background_df['label'].astype(int)
return background_df
#%%
# prepare samples in dictionary format
def get_data_dict(df,unitConversion=1):
data_dict = dict()
for subject in tqdm(df['subject'].unique()):
data_dict[subject] = defaultdict(list)
subject_df = df[df['subject']==subject]
for series in subject_df['series'].unique():
series_df = subject_df[subject_df['series']==series]
for category in series_df['label'].unique():
category_df = series_df[series_df['label']==category]
if category_df.shape[0] >= SAMPLES: # at least this many samples for this subject from this category
start = 0
end = start + SAMPLES
while end <= category_df.shape[0]:
chunk_category_df = category_df[start:end]
chunk_category_arr = np.array(chunk_category_df[FEATNAMES]) * unitConversion # SAMPLES x NFEATS
data_dict[subject][category].append(chunk_category_arr)
start = start + jump
end = start + SAMPLES
for category in subject_df['label'].unique():
if len(data_dict[subject][category]) == 0:
data_dict[subject].pop(category)
else:
data_dict[subject][category] = np.stack(data_dict[subject][category]) # NCHUNKS x SAMPLES x NFEATS
return data_dict
# get number of samples from each category
def get_sample_counts(data_dict):
summary_df = pd.DataFrame(columns=['label','subject'])
for subject in data_dict.keys():
categories = data_dict[subject].keys()
for category in categories:
data = data_dict[subject][category]
nsamples = data.shape[0]
curr_df = pd.DataFrame([category]*nsamples,columns=['label'])
curr_df['subject'] = subject
summary_df = pd.concat((summary_df,curr_df),0)
return summary_df
# calculate final number of samples to obtain a uniform distribution across the classes
def get_subsampled_sample_counts(summary_df,labels=[0,1,2]):
new_summary_df = pd.DataFrame()
min_nsamples = summary_df['label'].value_counts().min()
for category in labels:
category_df = summary_df[summary_df['label']==category]
subsampled_category_df = category_df.sample(min_nsamples,random_state=0)
new_summary_df = pd.concat((new_summary_df,subsampled_category_df),0)
counts_df = new_summary_df.groupby(by=['subject'])['label'].value_counts()
counts_df.name = 'count'
counts_df = counts_df.reset_index()
return new_summary_df, counts_df
def subsample_data_dict(data_dict,counts_df):
# subsample data according to above calculated sample numbers
new_data_dict = dict()
for subject in data_dict.keys():
new_data_dict[subject] = dict()
for category in data_dict[subject].keys():
combined_bool = (counts_df['subject']==subject) & (counts_df['label']==category)
if combined_bool.sum() == 0:
continue
count = counts_df[combined_bool]['count'].item()
subsampled_data = data_dict[subject][category][:count]
new_data_dict[subject][category] = subsampled_data
# remove any empty entries
subjects_to_keep = []
for subject,data in new_data_dict.items():
if data != dict():
subjects_to_keep.extend([subject])
new_data_dict = {subject:new_data_dict[subject] for subject in subjects_to_keep}
return new_data_dict
#%%
if DATASOURCE == 'lab':
DATA_DIR = '/home/danikiyasseh/datasets/tlvmc-parkinsons-freezing-gait-prediction/train/tdcsfog'
tdcsfog_metadata_df = pd.read_csv('/home/danikiyasseh/datasets/tlvmc-parkinsons-freezing-gait-prediction/tdcsfog_metadata.csv')
FILENAMES = [os.path.join(DATA_DIR,file) for file in os.listdir(DATA_DIR) if '.csv' in file]
df = get_multiclass_df(FILENAMES,tdcsfog_metadata_df)
multiclass_data_dict = get_data_dict(df)
multiclass_summary_df = get_sample_counts(multiclass_data_dict)
elif DATASOURCE == 'realworld':
DATA_DIR = '/home/danikiyasseh/datasets/tlvmc-parkinsons-freezing-gait-prediction/train/defog'
defog_metadata_df = pd.read_csv('/home/danikiyasseh/datasets/tlvmc-parkinsons-freezing-gait-prediction/defog_metadata.csv')
FILENAMES = [os.path.join(DATA_DIR,file) for file in os.listdir(DATA_DIR) if '.csv' in file]
df = get_multiclass_df(FILENAMES,defog_metadata_df)
multiclass_data_dict = get_data_dict(df,unitConversion=9.81)
multiclass_summary_df = get_sample_counts(multiclass_data_dict)
elif DATASOURCE == 'lab_and_realworld':
# LAB data
DATA_DIR = '/home/danikiyasseh/datasets/tlvmc-parkinsons-freezing-gait-prediction/train/tdcsfog'
tdcsfog_metadata_df = pd.read_csv('/home/danikiyasseh/datasets/tlvmc-parkinsons-freezing-gait-prediction/tdcsfog_metadata.csv')
FILENAMES = [os.path.join(DATA_DIR,file) for file in os.listdir(DATA_DIR) if '.csv' in file]
df = get_multiclass_df(FILENAMES,tdcsfog_metadata_df)
tdcsfog_multiclass_data_dict = get_data_dict(df)
tdcsfog_multiclass_summary_df = get_sample_counts(tdcsfog_multiclass_data_dict)
# REALWORLD data
DATA_DIR = '/home/danikiyasseh/datasets/tlvmc-parkinsons-freezing-gait-prediction/train/defog'
defog_metadata_df = pd.read_csv('/home/danikiyasseh/datasets/tlvmc-parkinsons-freezing-gait-prediction/defog_metadata.csv')
FILENAMES = [os.path.join(DATA_DIR,file) for file in os.listdir(DATA_DIR) if '.csv' in file]
df = get_multiclass_df(FILENAMES,defog_metadata_df)
defog_multiclass_data_dict = get_data_dict(df,unitConversion=9.81)
defog_multiclass_summary_df = get_sample_counts(defog_multiclass_data_dict)
multiclass_data_dict = {**tdcsfog_multiclass_data_dict,**defog_multiclass_data_dict}
multiclass_summary_df = pd.concat((tdcsfog_multiclass_summary_df,defog_multiclass_summary_df),0)
#%%
""" Subsample the classes """
subsampled_multiclass_summary_df, subsampled_multiclass_counts_df = get_subsampled_sample_counts(multiclass_summary_df)
subsampled_multiclass_data_dict = subsample_data_dict(multiclass_data_dict, subsampled_multiclass_counts_df)
#%%
if TASK == 'binary': # convert problem to binary classification
""" Get background data (from lab only for now) """
background_df = get_background_df(FILENAMES,tdcsfog_metadata_df)
background_data_dict = get_data_dict(background_df)
# prepare data dict for binary classification (event vs. no event)
background_summary_df = get_sample_counts(background_data_dict)
multiclass_summary_df['label'] = multiclass_summary_df['label'].replace({0:1,1:1,2:1})
background_summary_df['label'] = 0
binary_summary_df = pd.concat((background_summary_df,multiclass_summary_df),0)
subsampled_binary_summary_df, subsampled_binary_counts_df = get_subsampled_sample_counts(binary_summary_df,labels=[0,1])
# add the background data to a combined data dict
binary_data_dict = copy.deepcopy(multiclass_data_dict)
for subject in binary_data_dict.keys():
if subject in background_data_dict:
binary_data_dict[subject][-1] = background_data_dict[subject][-1] # background originally labelled as -1 (to avoid overlapping with other classes)
# aggregate the non background data into one category
new_binary_data_dict = dict()
for subject in binary_data_dict.keys():
new_binary_data_dict[subject] = dict()
categories = binary_data_dict[subject].keys()
new_arr = []
for category in categories:
if category in [0,1,2]: # FOG event classes
arr = binary_data_dict[subject][category]
new_arr.append(arr)
new_arr = np.stack(arr)
new_binary_data_dict[subject][0] = binary_data_dict[subject][-1] # background data
new_binary_data_dict[subject][1] = new_arr
# need to get combine_dict (combine multiclass and background dict)
subsampled_binary_data_dict = subsample_data_dict(new_binary_data_dict, subsampled_binary_counts_df)
#%%
with open('balanced_multiclass_data_dict','wb') as f:
pickle.dump(subsampled_multiclass_data_dict,f)
with open('balanced_binary_data_dict','wb') as f:
pickle.dump(subsampled_binary_data_dict,f)
#%%
with open('balanced_multiclass_data_dict','rb') as f:
multiclass_data_dict = pickle.load(f)
with open('balanced_binary_data_dict','rb') as f:
binary_data_dict = pickle.load(f)
#%%
""" inspect number of samples from each class """
def get_class_counts(multiclass_data_dict):
counts = {i:0 for i in range(3)}
for key in multiclass_data_dict.keys():
for cat in multiclass_data_dict[key].keys():
counts[cat] += multiclass_data_dict[key][cat].shape[0]
print(counts)
#%%
def data_generator(subjects,data_dict):
#random.shuffle(subjects)
for subject in subjects:
#subject = subject.decode("utf-8") # tf encodes input string to utf-8 (therefore you must decode it)
#assert isinstance(data_dict,dict)
categories_dict = data_dict[subject]
for category in categories_dict.keys():
data = categories_dict[category]
if isinstance(data,np.ndarray):
nchunks = data.shape[0]
for i in range(nchunks):
input_data = categories_dict[category][i] # 256 x 3
#channel_mean = np.mean(input_data,axis=0)
#channel_std = np.std(input_data,axis=0)
#input_data = (input_data - channel_mean)/channel_std
b,a = scipy.signal.butter(2, 15, 'low', fs=128)
input_data = scipy.signal.lfilter(b,a,input_data,axis=0)
output_data = [category]*SAMPLES # 256
yield tf.constant(input_data), tf.constant(output_data)
#%%
FOLDS = 1
for fold in range(FOLDS):
random.seed(fold)
subjects = list(multiclass_data_dict.keys())
random.shuffle(subjects)
nsubjects = len(subjects)
train_frac, val_frac = 0.7, 0.2
train_nsubjects, val_nsubjects = int(train_frac*nsubjects), int(val_frac*nsubjects)
train_subjects, val_subjects, test_subjects = subjects[:train_nsubjects], subjects[train_nsubjects:train_nsubjects+val_nsubjects], subjects[train_nsubjects+val_nsubjects:]
if TASK == 'multiclass':
data_dict = multiclass_data_dict
elif TASK == 'binary':
data_dict = binary_data_dict
train_data = tf.data.Dataset.from_generator(lambda: data_generator(train_subjects,data_dict), # args=[x,y,z]
output_signature=(
tf.TensorSpec(shape=(SAMPLES,3), dtype=tf.float64),
tf.TensorSpec(shape=(SAMPLES), dtype=tf.int32))
) # shape is at the individual tensor level (not batch)
val_data = tf.data.Dataset.from_generator(lambda: data_generator(val_subjects,data_dict),
output_signature=(
tf.TensorSpec(shape=(SAMPLES,3), dtype=tf.float64),
tf.TensorSpec(shape=(SAMPLES), dtype=tf.int32))
) # shape is at the individual tensor level (not batch)
train_data = train_data.batch(batch_size=16) # 16
train_data = train_data.shuffle(100,seed=fold)
val_data = val_data.batch(batch_size=8) # 8
val_data = val_data.shuffle(100,seed=fold)
""" Make bidirectional """
lstm_model = tf.keras.models.Sequential([
tf.keras.layers.InputLayer(input_shape=(SAMPLES, 3)),
# Shape [batch, time, features]
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True)), # returns output at each time-step (i.e., many to many setup)
# Shape => [batch, time, features]
tf.keras.layers.Dense(units=3) if TASK == 'multiclass' else tf.keras.layers.Dense(units=1)
])
class multiclassAUPRC(tf.keras.metrics.AUC):
def __init__(self,**kwargs): # you need to have the kwargs here to be able to load it in later
super(multiclassAUPRC,self).__init__(from_logits=True,curve='PR')
def update_state(self, y_true, y_pred, sample_weight=None):
y_true = tf.one_hot(y_true,depth=3)
super().update_state(y_true, y_pred)
if TASK == 'multiclass':
lstm_model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy',multiclassAUPRC()])
elif TASK == 'binary':
lstm_model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3),
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=['accuracy',tf.keras.metrics.AUC()])
lstm_model.fit(
x = train_data,
validation_data = val_data,
epochs = 50,
callbacks=[
tf.keras.callbacks.EarlyStopping(monitor='val_loss',min_delta=0.001,patience=5),
tf.keras.callbacks.TensorBoard('./logs', update_freq=1),
tf.keras.callbacks.ModelCheckpoint(
filepath='/tmp/checkpoint_fold%i' % fold,
save_weights_only=True,
monitor='val_accuracy',
mode='max',
save_best_only=True)
]
)
#%%
lstm_model.save(os.path.join(SAVE_DIR,'lstm_parkinsons'))
#%%
lstm_model = tf.keras.models.load_model(os.path.join(SAVE_DIR,'lstm_parkinsons'),custom_objects={"multiclassAUPRC":multiclassAUPRC})
#%%
import glob
test_paths = glob.glob("test/**/**")
all_preds_df = pd.DataFrame()
for f in test_paths:
df = pd.read_csv(f)
df.set_index('Time', drop=True, inplace=True)
df['Id'] = f.split('/')[-1].split('.')[0]
df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str)
start = 0
end = start + jump
while end <= df.shape[0]:
chunk_df = df[start:end]
chunk_arr = np.array(chunk_df[FEATNAMES]) # SAMPLES x NFEATS
chunk_arr = np.expand_dims(chunk_arr,0) # 1 x SAMPLES x NFEATS
preds = lstm_model.predict(chunk_arr)
preds_df = pd.DataFrame(preds.squeeze(0),columns=CATEGORIES,index=chunk_df.index)
preds_df['Id'] = chunk_df['Id']
all_preds_df = pd.concat((all_preds_df,preds_df),0)
start += jump
end = start+jump
# make sure to cover the final (smaller batch)
final_nsamples = df.shape[0] - start
chunk_df = df[-SAMPLES:]
chunk_arr = np.array(chunk_df[FEATNAMES]) # SAMPLES x NFEATS
chunk_arr = np.expand_dims(chunk_arr,0) # 1 x SAMPLES x NFEATS
preds = lstm_model.predict(chunk_arr)
preds_df = pd.DataFrame(preds.squeeze(0),columns=CATEGORIES,index=chunk_df.index)
preds_df['Id'] = chunk_df['Id']
preds_df = preds_df[-final_nsamples:]
all_preds_df = pd.concat((all_preds_df,preds_df),0)
submission_df = all_preds_df[['Id','StartHesitation','Turn','Walking']]
submission_df.to_csv(os.path.join(SAVE_DIR,'submission.csv'),index=False)