Skip to content

Commit

Permalink
convert-lora : make --base optional (ggerganov#10110)
Browse files Browse the repository at this point in the history
* convert-lora : make `--base` optional

* lint

* handle case where base_model_name_or_path is invalid

* do not include metadata from base model

* clarify unspecified --base

* add small comment [no ci]

* trigger ci
  • Loading branch information
ngxson authored Nov 2, 2024
1 parent a6744e4 commit 7554aa4
Show file tree
Hide file tree
Showing 2 changed files with 51 additions and 23 deletions.
27 changes: 14 additions & 13 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,8 @@ class Model:
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")

Expand All @@ -87,7 +88,7 @@ def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path,
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = Model.load_hparams(self.dir_model)
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
self.tensor_names = None
Expand Down Expand Up @@ -1541,6 +1542,17 @@ def set_vocab(self):
special_vocab._set_special_token("eot", 32010)
special_vocab.add_to_gguf(self.gguf_writer)

tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "add_prefix_space" in tokenizer_config_json:
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])

# Apply to granite small models only
if self.hparams.get("vocab_size", 32000) == 49152:
self.gguf_writer.add_add_bos_token(False)

def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
Expand All @@ -1557,17 +1569,6 @@ def set_gguf_parameters(self):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])

tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "add_prefix_space" in tokenizer_config_json:
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])

# Apply to granite small models only
if self.hparams.get("vocab_size", 32000) == 49152:
self.gguf_writer.add_add_bos_token(False)

@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
Expand Down
47 changes: 37 additions & 10 deletions convert_lora_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
from transformers import AutoConfig

import torch

Expand Down Expand Up @@ -256,8 +257,8 @@ def parse_args() -> argparse.Namespace:
help="only print out what will be done, without writing any new files",
)
parser.add_argument(
"--base", type=Path, required=True,
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required",
"--base", type=Path,
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
)
parser.add_argument(
"lora_path", type=Path,
Expand All @@ -267,6 +268,12 @@ def parse_args() -> argparse.Namespace:
return parser.parse_args()


def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
# normally, adapter does not come with base model config, we need to load it from AutoConfig
config = AutoConfig.from_pretrained(hf_model_id)
return config.to_dict()


if __name__ == '__main__':
args = parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
Expand All @@ -281,7 +288,7 @@ def parse_args() -> argparse.Namespace:

ftype = ftype_map[args.outtype]

dir_base_model: Path = args.base
dir_base_model: Path | None = args.base
dir_lora: Path = args.lora_path
lora_config = dir_lora / "adapter_config.json"
input_model = dir_lora / "adapter_model.safetensors"
Expand All @@ -301,9 +308,29 @@ def parse_args() -> argparse.Namespace:
input_model = os.path.join(dir_lora, "adapter_model.bin")
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)

# load LoRA config
with open(lora_config, "r") as f:
lparams: dict[str, Any] = json.load(f)

# load base model
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)
if dir_base_model is None:
if "base_model_name_or_path" in lparams:
model_id = lparams["base_model_name_or_path"]
logger.info(f"Loading base model from Hugging Face: {model_id}")
try:
hparams = load_hparams_from_hf(model_id)
except OSError as e:
logger.error(f"Failed to load base model config: {e}")
logger.error("Please try downloading the base model and add its path to --base")
sys.exit(1)
else:
logger.error("'base_model_name_or_path' is not found in adapter_config.json")
logger.error("Base model config is required. Please download the base model and add its path to --base")
sys.exit(1)
else:
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)

with torch.inference_mode():
try:
model_class = Model.from_model_architecture(hparams["architectures"][0])
Expand All @@ -323,13 +350,15 @@ def __init__(self, *args, dir_lora_model: Path, lora_alpha: float, **kwargs):
self.dir_model_card = dir_lora_model
self.lora_alpha = float(lora_alpha)

def set_vocab(self):
pass

def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")

def set_gguf_parameters(self):
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
super().set_gguf_parameters()

def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
Expand All @@ -350,7 +379,7 @@ def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
logger.error("Hint: if you are using TRL, make sure not to call setup_chat_format()")
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
sys.exit(1)

if base_name in tensor_map:
Expand Down Expand Up @@ -384,9 +413,6 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
yield (dest_name + ".lora_a", lora_a)
yield (dest_name + ".lora_b", lora_b)

with open(lora_config, "r") as f:
lparams: dict[str, Any] = json.load(f)

alpha: float = lparams["lora_alpha"]

model_instance = LoraModel(
Expand All @@ -399,6 +425,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
dry_run=args.dry_run,
dir_lora_model=dir_lora,
lora_alpha=alpha,
hparams=hparams,
)

logger.info("Exporting model...")
Expand Down

0 comments on commit 7554aa4

Please sign in to comment.