Skip to content
This repository was archived by the owner on Oct 19, 2019. It is now read-only.

Updated to Tensorflow v0.12.1 API. Fixed a typo in the cifar-10 model. #20

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ def inference_small(x,
c['fc_units_out'] = num_classes
c['num_blocks'] = num_blocks
c['num_classes'] = num_classes
inference_small_config(x, c)
return inference_small_config(x, c)

def inference_small_config(x, c):
c['bottleneck'] = False
Expand Down Expand Up @@ -151,7 +151,7 @@ def loss(logits, labels):
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

loss_ = tf.add_n([cross_entropy_mean] + regularization_losses)
tf.scalar_summary('loss', loss_)
tf.summary.scalar('loss', loss_)

return loss_

Expand Down Expand Up @@ -241,15 +241,15 @@ def bn(x, c):
initializer=tf.zeros_initializer)
gamma = _get_variable('gamma',
params_shape,
initializer=tf.ones_initializer)
initializer=tf.ones_initializer())

moving_mean = _get_variable('moving_mean',
params_shape,
initializer=tf.zeros_initializer,
trainable=False)
moving_variance = _get_variable('moving_variance',
params_shape,
initializer=tf.ones_initializer,
initializer=tf.ones_initializer(),
trainable=False)

# These ops will only be preformed when training.
Expand Down Expand Up @@ -300,7 +300,7 @@ def _get_variable(name,
regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
else:
regularizer = None
collections = [tf.GraphKeys.VARIABLES, RESNET_VARIABLES]
collections = [tf.GraphKeys.GLOBAL_VARIABLES, RESNET_VARIABLES]
return tf.get_variable(name,
shape=shape,
initializer=initializer,
Expand Down
14 changes: 7 additions & 7 deletions resnet_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,15 +39,15 @@ def train(is_training, logits, images, labels):
# loss_avg
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
tf.add_to_collection(UPDATE_OPS_COLLECTION, ema.apply([loss_]))
tf.scalar_summary('loss_avg', ema.average(loss_))
tf.summary.scalar('loss_avg', ema.average(loss_))

# validation stats
ema = tf.train.ExponentialMovingAverage(0.9, val_step)
val_op = tf.group(val_step.assign_add(1), ema.apply([top1_error]))
top1_error_avg = ema.average(top1_error)
tf.scalar_summary('val_top1_error_avg', top1_error_avg)
tf.summary.scalar('val_top1_error_avg', top1_error_avg)

tf.scalar_summary('learning_rate', FLAGS.learning_rate)
tf.summary.scalar('learning_rate', FLAGS.learning_rate)

opt = tf.train.MomentumOptimizer(FLAGS.learning_rate, MOMENTUM)
grads = opt.compute_gradients(loss_)
Expand All @@ -67,17 +67,17 @@ def train(is_training, logits, images, labels):
batchnorm_updates_op = tf.group(*batchnorm_updates)
train_op = tf.group(apply_gradient_op, batchnorm_updates_op)

saver = tf.train.Saver(tf.all_variables())
saver = tf.train.Saver(tf.global_variables())

summary_op = tf.merge_all_summaries()
summary_op = tf.summary.merge_all()

init = tf.initialize_all_variables()
init = tf.global_variables_initializer()

sess = tf.Session(config=tf.ConfigProto(log_device_placement=False))
sess.run(init)
tf.train.start_queue_runners(sess=sess)

summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)
summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)

if FLAGS.resume:
latest = tf.train.latest_checkpoint(FLAGS.train_dir)
Expand Down
4 changes: 2 additions & 2 deletions train_cifar.py
Original file line number Diff line number Diff line change
Expand Up @@ -192,7 +192,7 @@ def distorted_inputs(data_dir, batch_size):
distorted_image, lower=0.2, upper=1.8)

# Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_whitening(distorted_image)
float_image = tf.image.per_image_standardization(distorted_image)

# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
Expand Down Expand Up @@ -250,7 +250,7 @@ def inputs(eval_data, data_dir, batch_size):
width, height)

# Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_whitening(resized_image)
float_image = tf.image.per_image_standardization(resized_image)

# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
Expand Down