Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 82 additions & 1 deletion R/package.R
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,12 @@ tf_v2 <- function() {
tryCatch(tf$python$util$deprecation$silence()$`__enter__`(),
error = function(e) NULL)

if (isNamespaceLoaded("keras")) {
keras2_backcompat_hook()
} else {
setHook(packageEvent("keras", "onLoad"), keras2_backcompat_hook)
}

# TODO: move this into .onAttach, where you either emit immediately if
# already loaded otherwise register emit hook for reticulate
# emit <- get("packageStartupMessage") # R CMD check
Expand All @@ -136,7 +142,6 @@ tf_v2 <- function() {
"a Python installation where the tensorflow module is installed.", call. = FALSE)
})


# provide a common base S3 class for tensors
reticulate::register_class_filter(function(classes) {
if (any(c("tensorflow.python.ops.variables.Variable",
Expand All @@ -160,6 +165,82 @@ is_string <- function(x) {
is.character(x) && length(x) == 1L && !is.na(x)
}


keras2_backcompat_hook <- #function(){}
function(...) {
message("Calling keras2 backcompat hooks")
keras_ns <- asNamespace("keras")

new_model_class_names <- c("keras.src.models.sequential.Sequential",
"keras.models.sequential.Sequential")

generic <- "compose_layer"
method <- keras_ns[["compose_layer.keras.models.Sequential"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

new_model_class_names <- c("keras.src.models.model.Model",
"keras.models.model.Model")

generic <- "fit"
method <- keras_ns[["fit.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "compile"
method <- keras_ns[["compile.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "predict"
method <- keras_ns[["predict.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "evaluate"
method <- keras_ns[["evaluate.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "export_savedmodel"
method <- keras_ns[["export_savedmodel.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "format"
method <- keras_ns[["format.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "print"
method <- keras_ns[["print.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "summary"
method <- keras_ns[["summary.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "plot"
method <- keras_ns[["plot.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

}



#' TensorFlow configuration information
#'
#' @return List with information on the current configuration of TensorFlow.
Expand Down
Loading