-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathch06_stock_bot_gemini.py
228 lines (169 loc) · 6.38 KB
/
ch06_stock_bot_gemini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# -*- coding: utf-8 -*-
"""ch06_stock_bot_gemini.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1EzWQQ_wtym7Qw5aGLQlq87polnFZcM7Q
# CH-06 個股分析機器人
### 1️⃣ 安裝及匯入套件
"""
#!pip install openai
#!pip install yfinance==0.2.38
from openai import OpenAI, OpenAIError # 串接 OpenAI API
import yfinance as yf
import pandas as pd # 資料處理套件
import numpy as np
import datetime as dt # 時間套件
import requests
from bs4 import BeautifulSoup
"""### 2️⃣ 輸入 Gemini API KEY"""
#from google.colab import userdata
GEMINI_API_KEY = ''
client = OpenAI(
api_key=GEMINI_API_KEY,
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
"""### 3️⃣ 取得股價資料"""
# 從 yfinance 取得一周股價資料
def stock_price(stock_id="大盤", days = 10):
if stock_id == "大盤":
stock_id="^TWII"
else:
stock_id += ".TW"
end = dt.date.today() # 資料結束時間
start = end - dt.timedelta(days=days) # 資料開始時間
# 下載資料
df = yf.download(stock_id, start=start)
# 更換列名
df.columns = ['開盤價', '最高價', '最低價',
'收盤價', '調整後收盤價', '成交量']
data = {
'日期': df.index.strftime('%Y-%m-%d').tolist(),
'收盤價': df['收盤價'].tolist(),
'每日報酬': df['收盤價'].pct_change().tolist(),
'漲跌價差': df['調整後收盤價'].diff().tolist()
}
return data
#print(stock_price("2330"))
"""### 4️⃣ 取得基本面資料"""
# 基本面資料
def stock_fundamental(stock_id= "大盤"):
if stock_id == "大盤":
return None
stock_id += ".TW"
stock = yf.Ticker(stock_id)
# 營收成長率
quarterly_revenue_growth = np.round(stock.quarterly_financials.loc["Total Revenue"].pct_change(-1).dropna().tolist(), 2)
# 每季EPS
quarterly_eps = np.round(stock.quarterly_financials.loc["Basic EPS"].dropna().tolist(), 2)
# EPS季增率
quarterly_eps_growth = np.round(stock.quarterly_financials.loc["Basic EPS"].pct_change(-1).dropna().tolist(), 2)
# 轉換日期
dates = [date.strftime('%Y-%m-%d') for date in stock.quarterly_financials.columns]
data = {
'季日期': dates[:len(quarterly_revenue_growth)],
'營收成長率': quarterly_revenue_growth.tolist(),
'EPS': quarterly_eps[0:3].tolist(),
'EPS 季增率': quarterly_eps_growth[0:3].tolist()
}
return data
#print(stock_fundamental("2330"))
"""### 5️⃣ 取得新聞資料"""
# 新聞資料
def stock_news(stock_name ="大盤"):
if stock_name == "大盤":
stock_name="台股 -盤中速報"
data=[]
# 取得 Json 格式資料
json_data = requests.get(f'https://ess.api.cnyes.com/ess/api/v1/news/keyword?q={stock_name}&limit=5&page=1').json()
# 依照格式擷取資料
items=json_data['data']['items']
for item in items:
# 網址、標題和日期
news_id = item["newsId"]
title = item["title"]
publish_at = item["publishAt"]
# 使用 UTC 時間格式
utc_time = dt.datetime.utcfromtimestamp(publish_at)
formatted_date = utc_time.strftime('%Y-%m-%d')
# 前往網址擷取內容
url = requests.get(f'https://news.cnyes.com/'
f'news/id/{news_id}').content
soup = BeautifulSoup(url, 'html.parser')
p_elements=soup .find_all('p')
# 提取段落内容
p=''
for paragraph in p_elements[4:]:
p+=paragraph.get_text()
data.append([stock_name, formatted_date ,title,p])
return data
#print(stock_news("台積電"))
"""### 6️⃣ 爬取股號、股名對照表"""
# 取得全部股票的股號、股名
def stock_name():
print("線上讀取股號、股名、及產業別")
response = requests.get('https://isin.twse.com.tw/isin/C_public.jsp?strMode=2')
url_data = BeautifulSoup(response.text, 'html.parser')
stock_company = url_data.find_all('tr')
# 資料處理
data = [
(row.find_all('td')[0].text.split('\u3000')[0].strip(),
row.find_all('td')[0].text.split('\u3000')[1],
row.find_all('td')[4].text.strip())
for row in stock_company[2:] if len(row.find_all('td')[0].text.split('\u3000')[0].strip()) == 4
]
df = pd.DataFrame(data, columns=['股號', '股名', '產業別'])
return df
name_df = stock_name()
"""### 7️⃣ 取得股票名稱"""
# 取得股票名稱
def get_stock_name(stock_id, name_df):
return name_df.set_index('股號').loc[stock_id, '股名']
#print(name_df.head())
#print("--------------------------")
#print(get_stock_name("1417",name_df))
"""### 8️⃣ 建構 Gemini 2.0 Flash 模型"""
# 建立 Gemini 2.0 Flash 模型
def get_reply(messages):
try:
response = client.chat.completions.create(
model = "gemini-2.0-flash",
messages = messages
)
reply = response.choices[0].message.content
except OpenAIError as err:
reply = f"發生 {err.type} 錯誤\n{err.message}"
return reply
# 建立訊息指令(Prompt)
def generate_content_msg(stock_id, name_df):
stock_name = get_stock_name(
stock_id, name_df) if stock_id != "大盤" else stock_id
price_data = stock_price(stock_id)
news_data = stock_news(stock_name)
content_msg = f'請依據以下資料來進行分析並給出一份完整的分析報告:\n'
content_msg += f'近期價格資訊:\n {price_data}\n'
if stock_id != "大盤":
stock_value_data = stock_fundamental(stock_id)
content_msg += f'每季營收資訊:\n {stock_value_data}\n'
content_msg += f'近期新聞資訊: \n {news_data}\n'
content_msg += f'請給我{stock_name}近期的趨勢報告,請以詳細、\
嚴謹及專業的角度撰寫此報告,並提及重要的數字, reply in 繁體中文'
return content_msg
# StockGPT
def stock_gpt(stock_id, name_df=name_df):
content_msg = generate_content_msg(stock_id, name_df)
msg = [{
"role": "system",
"content": f"你現在是一位專業的證券分析師, 你會統整近期的股價\
、基本面、新聞資訊等方面並進行分析, 然後生成一份專業的趨勢分析報告"
}, {
"role": "user",
"content": content_msg
}]
reply_data = get_reply(msg)
return reply_data
"""### 9️⃣ 大盤趨勢報告"""
reply = stock_gpt(stock_id="大盤")
print(reply)
"""### 🔟 個股分析報告"""
reply = stock_gpt(stock_id="2330")
print(reply)