Skip to content

NXP backend: Add quantization of aten.view #11784

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view

This file was deleted.

7 changes: 0 additions & 7 deletions backends/nxp/backend/ir/tflite_optimizer/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,9 +54,6 @@
from executorch.backends.nxp.backend.ir.tflite_optimizer.optimizations.remove_unused_tensors_and_buffers import (
RemoveUnusedTensorsAndBuffers,
)
from executorch.backends.nxp.backend.ir.tflite_optimizer.optimizations.replace_average_pool_before_fully_connected_with_sum import (
ReplaceAveragePoolBeforeFullyConnectedWithSum,
)


class Optimization(Enum):
Expand All @@ -83,7 +80,6 @@ class Optimization(Enum):

MOVE_ACTIVATION_BEFORE_CONCAT = 15
COMBINE_HARD_SIGMOID_AND_MUL_INTO_HARD_SWISH = 16
REPLACE_AVERAGE_POOL_BEFORE_FULLY_CONNECTED_WITH_SUM = 17


class Optimizer:
Expand Down Expand Up @@ -164,9 +160,6 @@ def __init__(
Optimization.COMBINE_HARD_SIGMOID_AND_MUL_INTO_HARD_SWISH: CombineHardSigmoidAndMulIntoHardSwish(
builder, conversion_config
),
Optimization.REPLACE_AVERAGE_POOL_BEFORE_FULLY_CONNECTED_WITH_SUM: ReplaceAveragePoolBeforeFullyConnectedWithSum(
builder, conversion_config
),
}

def optimize(
Expand Down
2 changes: 2 additions & 0 deletions backends/nxp/quantizer/neutron_quantizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
ReluPattern,
ReshapePattern,
SoftMaxPattern,
ViewPattern,
)
from executorch.backends.nxp.quantizer.utils import (
find_sequential_partitions_aten,
Expand Down Expand Up @@ -200,6 +201,7 @@ def __init__(self):
NeutronAtenQuantizer(ReluPattern(), static_qconfig),
NeutronAtenQuantizer(ReluInPlacePattern(), static_qconfig),
NeutronAtenQuantizer(AvgPoolPattern(), static_qconfig),
NeutronAtenQuantizer(ViewPattern(), static_qconfig),
]
)

Expand Down
9 changes: 9 additions & 0 deletions backends/nxp/quantizer/patterns.py
Original file line number Diff line number Diff line change
Expand Up @@ -307,6 +307,15 @@ def partition_types(self):
return [torch.ops.aten.reshape.default]


class ViewPattern(SharedSpecPattern):
"""
Quantizer for View operator.
"""

def partition_types(self):
return [torch.ops.aten.view.default]


class SoftMaxPattern(QuantizationPattern):
"""
Quantizer for Softmax operator.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,7 @@
import pytest
import torch

from executorch.backends.nxp.backend.edge_program_converter import (
EdgeProgramToIRConverter,
)
from executorch.backends.nxp.tests.executorch_pipeline import (
to_edge_program,
to_quantized_edge_program,
)
from executorch.backends.nxp.tests.executorch_pipeline import to_edge_program
from executorch.backends.nxp.tests.executors import (
convert_run_compare,
ToNCHWPreprocess,
Expand All @@ -22,9 +16,7 @@
from executorch.backends.nxp.tests.models import (
ConstantPadNDConvModule,
ConstantPadNDModule,
Conv2dConstantPadNDModule,
)
from torch.export import ExportedProgram


@pytest.fixture(autouse=True)
Expand All @@ -47,37 +39,6 @@ def test_constant_pad_nd_conversion__specific_constant(constant):
convert_run_compare(edge_program, input_data)


@pytest.mark.parametrize("constant", [0.0, 67.28, 42.0, -13.37])
@pytest.mark.skip(reason="Neutron Converter does not fully convert for NPU")
def test_constant_pad_nd_quant_conversion__specific_constant(mocker, constant):
input_shape = (2, 4, 12, 12)
paddings = (2, 2, 2, 2)

converter_spy = mocker.spy(EdgeProgramToIRConverter, "convert_program")

# Run conversion
_ = to_quantized_edge_program(
Conv2dConstantPadNDModule(paddings, constant), input_shape
)

# Capture generated model
tflite_flatbuffers_model, io_formats = converter_spy.spy_return

# Capture converted program
edge_program: ExportedProgram = converter_spy.call_args.args[1]

input_data = (np.random.random(input_shape).astype(np.float32) * 50).astype(np.int8)

convert_run_compare(
edge_program,
input_data,
tfl_model=tflite_flatbuffers_model,
atol=1.0,
tflite_input_preprocess=ToNHWCPreprocess(),
tflite_output_preprocess=ToNCHWPreprocess(),
)


def test_constant_pad_nd_conversion__default_constant():
input_shape = [2, 4, 6, 8]
paddings = [1, 2, 3, 4]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,24 @@ def forward(self, x):
return x


class ConvLinearViewModule(torch.nn.Module):
def __init__(self, channels: int, channels_view_out: int):
super().__init__()
self.conv = nn.Conv2d(channels, channels, 3, 2)
self.linear = nn.Linear(channels_view_out, 32, bias=True)
self.channels_view_out = channels_view_out
self.avg_pool = nn.AvgPool2d(1)
self.relu = nn.ReLU()

def forward(self, x):
x = self.conv(x)
x = self.relu(x)
x = self.avg_pool(x)
x = x.view(-1, self.channels_view_out)
x = self.linear(x)
return x


def test__channels_first_to_2d(mocker):
input_shape = [2, 4, 7, 9]
new_shape = [12, 32] # Mix up the dimensions for a thorough test.
Expand Down Expand Up @@ -205,19 +223,20 @@ def test_view_copy_w_linear_quant_conversion(mocker, input_shape, new_shape):


@pytest.mark.parametrize(
"input_shape, new_shape",
"input_shape, channels_view_out",
[
pytest.param((1, 4, 16, 16), (50, 18), id="4D, batch_size=1"),
pytest.param((10, 4, 16, 16), (500, 18), id="4D, , batch_size=10"),
pytest.param((1, 4, 16, 16), 196, id="4D"),
],
)
@pytest.mark.skip(reason="Neutron Converter does not fully convert for NPU")
def test_view_copy_w_conv_quant_conversion(mocker, input_shape, new_shape):
def test_view_w_conv_linear_quant_conversion(mocker, input_shape, channels_view_out):
converter_spy = mocker.spy(EdgeProgramToIRConverter, "convert_program")

# Run conversion
_ = to_quantized_edge_program(
ConvReshapeModule(channels=input_shape[1], new_shape=new_shape), input_shape
ConvLinearViewModule(
channels=input_shape[1], channels_view_out=channels_view_out
),
input_shape,
)

# Capture generated model
Expand Down
Loading