Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 16 additions & 10 deletions test.py
Original file line number Diff line number Diff line change
@@ -36,14 +36,17 @@ def tearDown(self):
gc.collect()


def _create_example_model_instance(task: ModelTask, device: str):
def _create_example_model_instance(task: ModelTask, device: str, mode: str):
skip = False
extra_args = ["--accuracy"]
if mode == "inductor":
extra_args.append("--inductor")
try:
task.make_model_instance(test="eval", device=device, extra_args=["--accuracy"])
task.make_model_instance(test="eval", device=device, extra_args=extra_args)
except NotImplementedError:
try:
task.make_model_instance(
test="train", device=device, extra_args=["--accuracy"]
test="train", device=device, extra_args=extra_args
)
except NotImplementedError:
skip = True
@@ -54,7 +57,7 @@ def _create_example_model_instance(task: ModelTask, device: str):
)


def _load_test(path, device):
def _load_test(path, device, mode):
model_name = os.path.basename(path)

def _skip_cuda_memory_check_p(metadata):
@@ -70,7 +73,7 @@ def example_fn(self):
skip=_skip_cuda_memory_check_p(metadata), assert_equal=self.assertEqual
):
try:
_create_example_model_instance(task, device)
_create_example_model_instance(task, device, mode)
accuracy = task.get_model_attribute("accuracy")
assert (
accuracy == "pass"
@@ -96,7 +99,7 @@ def train_fn(self):
):
try:
task.make_model_instance(
test="train", device=device, batch_size=batch_size
test="train", device=device, batch_size=batch_size, extra_args=["--inductor"] if mode == "inductor" else []
)
task.invoke()
task.check_details_train(device=device, md=metadata)
@@ -119,7 +122,7 @@ def eval_fn(self):
):
try:
task.make_model_instance(
test="eval", device=device, batch_size=batch_size
test="eval", device=device, batch_size=batch_size, extra_args=["--inductor"] if mode == "inductor" else []
)
task.invoke()
task.check_details_eval(device=device, md=metadata)
@@ -136,7 +139,7 @@ def check_device_fn(self):
skip=_skip_cuda_memory_check_p(metadata), assert_equal=self.assertEqual
):
try:
task.make_model_instance(test="eval", device=device)
task.make_model_instance(test="eval", device=device, extra_args=["--inductor"] if mode == "inductor" else [])
task.check_device()
task.del_model_instance()
except NotImplementedError as e:
@@ -152,9 +155,10 @@ def check_device_fn(self):
# set exclude list based on metadata
setattr(
TestBenchmark,
f"test_{model_name}_{fn_name}_{device}",
f"test_{model_name}_{fn_name}_{device}_{mode}",
(
unittest.skipIf(
# This is expecting that models will never be skipped just based on backend, just on eval or train functions being implemented
skip_by_metadata(
test=fn_name, device=device, extra_args=[], metadata=metadata
),
@@ -165,6 +169,7 @@ def check_device_fn(self):


def _load_tests():
modes = ["eager", "inductor"]
devices = ["cpu"]
if torch.cuda.is_available():
devices.append("cuda")
@@ -181,7 +186,8 @@ def _load_tests():
if "quantized" in path:
continue
for device in devices:
_load_test(path, device)
for mode in modes:
_load_test(path, device, mode)


_load_tests()