Skip to content
This repository was archived by the owner on Aug 28, 2024. It is now read-only.

Update create_d2go.py #148

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 20 additions & 43 deletions D2Go/create_d2go.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,40 +13,11 @@
from d2go.model_zoo import model_zoo

from mobile_cv.common.misc.file_utils import make_temp_directory
from d2go.tests.data_loader_helper import LocalImageGenerator, register_toy_dataset


patch_d2_meta_arch()


@contextlib.contextmanager
def create_fake_detection_data_loader(height, width, is_train):
with make_temp_directory("detectron2go_tmp_dataset") as dataset_dir:
runner = create_runner("d2go.runner.GeneralizedRCNNRunner")
cfg = runner.get_default_cfg()
cfg.DATASETS.TRAIN = ["default_dataset_train"]
cfg.DATASETS.TEST = ["default_dataset_test"]

with make_temp_directory("detectron2go_tmp_dataset") as dataset_dir:
image_dir = os.path.join(dataset_dir, "images")
os.makedirs(image_dir)
image_generator = LocalImageGenerator(image_dir, width=width, height=height)

if is_train:
with register_toy_dataset(
"default_dataset_train", image_generator, num_images=3
):
train_loader = runner.build_detection_train_loader(cfg)
yield train_loader
else:
with register_toy_dataset(
"default_dataset_test", image_generator, num_images=3
):
test_loader = runner.build_detection_test_loader(
cfg, dataset_name="default_dataset_test"
)
yield test_loader

def test_export_torchvision_format():
cfg_name = 'faster_rcnn_fbnetv3a_dsmask_C4.yaml'
pytorch_model = model_zoo.get(cfg_name, trained=True)
Expand Down Expand Up @@ -76,21 +47,27 @@ def forward(self, inputs: List[torch.Tensor]):

size_divisibility = max(pytorch_model.backbone.size_divisibility, 10)
h, w = size_divisibility, size_divisibility * 2
with create_fake_detection_data_loader(h, w, is_train=False) as data_loader:
predictor_path = convert_and_export_predictor(
model_zoo.get_config(cfg_name),
copy.deepcopy(pytorch_model),
"torchscript_int8@tracing",
'./',
data_loader,
)

orig_model = torch.jit.load(os.path.join(predictor_path, "model.jit"))
wrapped_model = Wrapper(orig_model)
# optionally do a forward
wrapped_model([torch.rand(3, 600, 600)])
scripted_model = torch.jit.script(wrapped_model)
scripted_model.save("ObjectDetection/app/src/main/assets/d2go.pt")
runner = create_runner("d2go.runner.GeneralizedRCNNRunner")
cfg = model_zoo.get_config(cfg_name)
datasets = list(cfg.DATASETS.TRAIN)

data_loader = runner.build_detection_test_loader(cfg, datasets)

predictor_path = convert_and_export_predictor(
cfg,
copy.deepcopy(pytorch_model),
"torchscript_int8@tracing",
'./',
data_loader,
)

orig_model = torch.jit.load(os.path.join(predictor_path, "model.jit"))
wrapped_model = Wrapper(orig_model)
# optionally do a forward
wrapped_model([torch.rand(3, 600, 600)])
scripted_model = torch.jit.script(wrapped_model)
scripted_model.save("ObjectDetection/app/src/main/assets/d2go.pt")

if __name__ == '__main__':
test_export_torchvision_format()