Skip to content

run black on all notebooks #135

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
@@ -1,15 +1,15 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.3.0
rev: v3.4.0
hooks:
- id: check-toml
- id: check-yaml
- repo: https://github.com/nbQA-dev/nbQA
rev: 0.5.4
rev: 0.5.5
hooks:
- id: nbqa-black
additional_dependencies: [black==20.8b1]
files: ^Rethinking_2/
exclude: ^BCM/CaseStudies/MemoryRetention\.ipynb$
- id: nbqa-isort
additional_dependencies: [isort==5.6.4]
- id: nbqa-pyupgrade
Expand Down
54 changes: 28 additions & 26 deletions BCM/CaseStudies/ExtrasensoryPerception.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
"from theano import tensor as tt\n",
"\n",
"%config InlineBackend.figure_format = 'retina'\n",
"warnings.simplefilter(action='ignore', category=(FutureWarning, UserWarning))\n",
"warnings.simplefilter(action=\"ignore\", category=(FutureWarning, UserWarning))\n",
"RANDOM_SEED = 8927\n",
"np.random.seed(RANDOM_SEED)"
]
Expand Down Expand Up @@ -111,9 +111,7 @@
"\n",
" cov = pm.Deterministic(\n",
" \"cov\",\n",
" tt.stacklists(\n",
" [[lambda1 ** -1, r * sigma1 * sigma2], [r * sigma1 * sigma2, lambda2 ** -1]]\n",
" ),\n",
" tt.stacklists([[lambda1 ** -1, r * sigma1 * sigma2], [r * sigma1 * sigma2, lambda2 ** -1]]),\n",
" )\n",
"\n",
" tau1 = pm.Deterministic(\"tau1\", tt.nlinalg.matrix_inverse(cov))\n",
Expand Down Expand Up @@ -166,7 +164,11 @@
"my_pdf = stats.kde.gaussian_kde(r)\n",
"x = np.linspace(-1, 1, 200)\n",
"axes[1].plot(\n",
" x, my_pdf(x), \"r\", lw=2.5, alpha=0.6,\n",
" x,\n",
" my_pdf(x),\n",
" \"r\",\n",
" lw=2.5,\n",
" alpha=0.6,\n",
") # distribution function\n",
"axes[1].plot(x, np.ones(x.size) * 0.5, \"k--\", lw=2.5, alpha=0.6, label=\"Prior\")\n",
"\n",
Expand All @@ -175,9 +177,7 @@
"BF01 = posterior / prior\n",
"print(\"the Bayes Factor is %.3f\" % (1 / BF01))\n",
"\n",
"axes[1].plot(\n",
" [0, 0], [posterior, prior], \"k-\", [0, 0], [posterior, prior], \"ko\", lw=1.5, alpha=1\n",
")\n",
"axes[1].plot([0, 0], [posterior, prior], \"k-\", [0, 0], [posterior, prior], \"ko\", lw=1.5, alpha=1)\n",
"# ax1.hist(r, bins=100, normed=1,alpha=.3)\n",
"axes[1].set_xlabel(\"Correlation r\")\n",
"axes[1].set_ylabel(\"Density\")\n",
Expand All @@ -193,8 +193,7 @@
"\n",
"# Compare to exact solution Jeffreys (numerical integration):\n",
"BF_Jeffex = sp.integrate.quad(\n",
" lambda rho: ((1 - rho ** 2) ** ((n - 1) / 2))\n",
" / ((1 - rho * freqr[0, 1]) ** ((n - 1) - 0.5)),\n",
" lambda rho: ((1 - rho ** 2) ** ((n - 1) / 2)) / ((1 - rho * freqr[0, 1]) ** ((n - 1) - 0.5)),\n",
" -1,\n",
" 1,\n",
")\n",
Expand Down Expand Up @@ -239,6 +238,7 @@
"source": [
"# Data\n",
"# Proportion correct on erotic pictures, block 1 and block 2:\n",
"# fmt: off\n",
"prc1er=np.array([0.6000000, 0.5333333, 0.6000000, 0.6000000, 0.4666667, \n",
" 0.6666667, 0.6666667, 0.4000000, 0.6000000, 0.6000000,\n",
" 0.4666667, 0.6666667, 0.4666667, 0.6000000, 0.3333333,\n",
Expand Down Expand Up @@ -280,6 +280,7 @@
" 0.5333333, 0.6000000, 0.6666667, 0.4000000, 0.4000000,\n",
" 0.5333333, 0.8000000, 0.6000000, 0.4000000, 0.2000000,\n",
" 0.6000000, 0.6666667, 0.4666667, 0.4666667, 0.4666667])\n",
"# fmt: on\n",
"Nt = 60\n",
"xobs = np.vstack([prc1er, prc2er]).T * Nt\n",
"n, n2 = np.shape(xobs) # number of participants\n",
Expand Down Expand Up @@ -345,9 +346,7 @@
"\n",
" cov = pm.Deterministic(\n",
" \"cov\",\n",
" tt.stacklists(\n",
" [[lambda1 ** -1, r * sigma1 * sigma2], [r * sigma1 * sigma2, lambda2 ** -1]]\n",
" ),\n",
" tt.stacklists([[lambda1 ** -1, r * sigma1 * sigma2], [r * sigma1 * sigma2, lambda2 ** -1]]),\n",
" )\n",
"\n",
" tau1 = pm.Deterministic(\"tau1\", tt.nlinalg.matrix_inverse(cov))\n",
Expand Down Expand Up @@ -398,7 +397,11 @@
"my_pdf = stats.kde.gaussian_kde(r)\n",
"x1 = np.linspace(0, 1, 200)\n",
"plt.plot(\n",
" x1, my_pdf(x1), \"r\", lw=2.5, alpha=0.6,\n",
" x1,\n",
" my_pdf(x1),\n",
" \"r\",\n",
" lw=2.5,\n",
" alpha=0.6,\n",
") # distribution function\n",
"plt.plot(x1, np.ones(x1.size), \"k--\", lw=2.5, alpha=0.6, label=\"Prior\")\n",
"\n",
Expand All @@ -407,18 +410,15 @@
"BF01 = posterior / prior\n",
"print(\"the Bayes Factor is %.5f\" % (1 / BF01))\n",
"\n",
"plt.plot(\n",
" [0, 0], [posterior, prior], \"k-\", [0, 0], [posterior, prior], \"ko\", lw=1.5, alpha=1\n",
")\n",
"plt.plot([0, 0], [posterior, prior], \"k-\", [0, 0], [posterior, prior], \"ko\", lw=1.5, alpha=1)\n",
"plt.xlim([0, 1])\n",
"plt.xlabel(\"Correlation r\")\n",
"plt.ylabel(\"Density\")\n",
"\n",
"# Compare to exact solution Jeffreys (numerical integration):\n",
"freqr = sp.corrcoef(xobs[:, 0] / Nt, xobs[:, 1] / Nt)\n",
"BF_Jeffex = sp.integrate.quad(\n",
" lambda rho: ((1 - rho ** 2) ** ((n - 1) / 2))\n",
" / ((1 - rho * freqr[0, 1]) ** ((n - 1) - 0.5)),\n",
" lambda rho: ((1 - rho ** 2) ** ((n - 1) / 2)) / ((1 - rho * freqr[0, 1]) ** ((n - 1) - 0.5)),\n",
" 0,\n",
" 1,\n",
")\n",
Expand Down Expand Up @@ -463,6 +463,7 @@
}
],
"source": [
"# fmt: off\n",
"k2 = np.array([36, 32, 36, 36, 28, 40, 40, 24, 36, 36, 28, 40, 28, \n",
" 36, 20, 24, 24, 16, 20, 32, 40, 32, 36, 24, 28, 44,\n",
" 40, 36, 40, 32, 32, 40, 28, 20, 24, 32, 24, 24, 20, \n",
Expand All @@ -480,6 +481,7 @@
" 53, 26, 67, 73, 39, 62, 59, 75, 65, 60, 69, 63, 69, \n",
" 55, 63, 86, 70, 67, 54, 80, 71, 71, 55, 57, 41, 56, \n",
" 78, 58, 76, 54, 50, 61, 60, 32, 67])\n",
"# fmt: on\n",
"\n",
"nsubjs = len(k2)\n",
"ntrials = 60\n",
Expand Down Expand Up @@ -541,9 +543,7 @@
"\n",
" cov = pm.Deterministic(\n",
" \"cov\",\n",
" tt.stacklists(\n",
" [[lambda1 ** -1, r * sigma1 * sigma2], [r * sigma1 * sigma2, lambda2 ** -1]]\n",
" ),\n",
" tt.stacklists([[lambda1 ** -1, r * sigma1 * sigma2], [r * sigma1 * sigma2, lambda2 ** -1]]),\n",
" )\n",
"\n",
" tau1 = pm.Deterministic(\"tau1\", tt.nlinalg.matrix_inverse(cov))\n",
Expand Down Expand Up @@ -595,7 +595,11 @@
"my_pdf = stats.kde.gaussian_kde(r)\n",
"x1 = np.linspace(-1, 1, 200)\n",
"plt.plot(\n",
" x1, my_pdf(x1), \"r\", lw=2.5, alpha=0.6,\n",
" x1,\n",
" my_pdf(x1),\n",
" \"r\",\n",
" lw=2.5,\n",
" alpha=0.6,\n",
") # distribution function\n",
"plt.plot(x1, np.ones(x1.size) * 0.5, \"k--\", lw=2.5, alpha=0.6, label=\"Prior\")\n",
"\n",
Expand All @@ -604,9 +608,7 @@
"BF01 = posterior / prior\n",
"print(\"the Bayes Factor is %.5f\" % (1 / BF01))\n",
"\n",
"plt.plot(\n",
" [0, 0], [posterior, prior], \"k-\", [0, 0], [posterior, prior], \"ko\", lw=1.5, alpha=1\n",
")\n",
"plt.plot([0, 0], [posterior, prior], \"k-\", [0, 0], [posterior, prior], \"ko\", lw=1.5, alpha=1)\n",
"# ax1.hist(r, bins=100, normed=1,alpha=.3)\n",
"plt.xlim([-1, 1])\n",
"plt.xlabel(\"Correlation r\")\n",
Expand Down
12 changes: 3 additions & 9 deletions BCM/CaseStudies/HeuristicDecisionMaking.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -386,9 +386,7 @@
" \"zi\",\n",
" p=phi,\n",
" shape=ns,\n",
" testval=np.asarray(\n",
" [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n",
" ),\n",
" testval=np.asarray([1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),\n",
" )\n",
" zi_ = tt.reshape(tt.repeat(zi, nq), (ns, nq))\n",
"\n",
Expand Down Expand Up @@ -610,9 +608,7 @@
" unique_ord = np.vstack({tuple(row) for row in subj_s})\n",
" num_display = 10\n",
" print(\"Subject %s\" % (subj_id))\n",
" print(\n",
" \"There are %s search orders sampled in the posterior.\" % (unique_ord.shape[0])\n",
" )\n",
" print(\"There are %s search orders sampled in the posterior.\" % (unique_ord.shape[0]))\n",
"\n",
" mass_ = []\n",
" for s_ in unique_ord:\n",
Expand Down Expand Up @@ -733,9 +729,7 @@
" \"zi\",\n",
" p=phi,\n",
" shape=ns,\n",
" testval=np.asarray(\n",
" [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n",
" ),\n",
" testval=np.asarray([1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),\n",
" )\n",
" zi_ = tt.reshape(tt.repeat(zi, nq), (ns, nq))\n",
"\n",
Expand Down
16 changes: 6 additions & 10 deletions BCM/CaseStudies/MultinomialProcessingTrees.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
"from theano import tensor as tt\n",
"\n",
"%config InlineBackend.figure_format = 'retina'\n",
"warnings.simplefilter(action='ignore', category=(FutureWarning, UserWarning))\n",
"warnings.simplefilter(action=\"ignore\", category=(FutureWarning, UserWarning))\n",
"RANDOM_SEED = 8927\n",
"np.random.seed(RANDOM_SEED)"
]
Expand Down Expand Up @@ -300,6 +300,7 @@
"Nsubj = 21\n",
"Nitem = 20\n",
"\n",
"# fmt: off\n",
"response_1=np.array([2,4,4,10,2,1,3,14,2,2,5,11,6,0,4,10,1,\n",
" 0,4,15,1,0,2,17,1,2,4,13,4,1,6,9,5,1,4,\n",
" 10,1,0,9,10,5,0,3,12,0,1,6,13,1,5,7,7,1,\n",
Expand All @@ -315,6 +316,7 @@
" 3,0,11,6,1,2,16,1,2,1,10,1,3,6,7,13,0,\n",
" 0,8,4,3,5,16,1,1,2,5,4,7,4,15,0,5,0,6,\n",
" 3,6,5,17,2,0,1,17,1,0,2,8,3,6,3]).reshape(21,-1)\n",
"# fmt: on\n",
"\n",
"kall = [response_1, response_2, response_6]"
]
Expand Down Expand Up @@ -526,21 +528,15 @@
"indiv_trial2 = []\n",
"\n",
"with model2:\n",
" indiv_trial2.append(\n",
" pm.sample(2000, tune=2000, init=\"adapt_diag\", target_accept=0.95)\n",
" )\n",
" indiv_trial2.append(pm.sample(2000, tune=2000, init=\"adapt_diag\", target_accept=0.95))\n",
"\n",
"kshared.set_value(kall[1])\n",
"with model2:\n",
" indiv_trial2.append(\n",
" pm.sample(2000, tune=2000, init=\"adapt_diag\", target_accept=0.95)\n",
" )\n",
" indiv_trial2.append(pm.sample(2000, tune=2000, init=\"adapt_diag\", target_accept=0.95))\n",
"\n",
"kshared.set_value(kall[2])\n",
"with model2:\n",
" indiv_trial2.append(\n",
" pm.sample(2000, tune=2000, init=\"adapt_diag\", target_accept=0.95)\n",
" )"
" indiv_trial2.append(pm.sample(2000, tune=2000, init=\"adapt_diag\", target_accept=0.95))"
]
},
{
Expand Down
6 changes: 2 additions & 4 deletions BCM/CaseStudies/NumberConceptDevelopment.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
"from theano import tensor as tt\n",
"\n",
"%config InlineBackend.figure_format = 'retina'\n",
"warnings.simplefilter(action='ignore', category=(FutureWarning, UserWarning))\n",
"warnings.simplefilter(action=\"ignore\", category=(FutureWarning, UserWarning))\n",
"RANDOM_SEED = 8927\n",
"np.random.seed(RANDOM_SEED)"
]
Expand Down Expand Up @@ -93,9 +93,7 @@
" # Will be 1 for HN-Knowers\n",
" ind4 = int(i1 == nz)\n",
" ind5[i, j, k] = (\n",
" ind3\n",
" + ind4 * (2 + ind2)\n",
" + (1 - ind4) * (1 - ind3) * (ind1 * ind2 + ind1 + 1)\n",
" ind3 + ind4 * (2 + ind2) + (1 - ind4) * (1 - ind3) * (ind1 * ind2 + ind1 + 1)\n",
" )"
]
},
Expand Down
16 changes: 4 additions & 12 deletions BCM/CaseStudies/PsychophysicalFunctions.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -143,9 +143,7 @@
}
],
"source": [
"xmean = np.array(\n",
" [318.888, 311.0417, 284.4444, 301.5909, 296.2000, 305.7692, 294.6429, 280.3571]\n",
")\n",
"xmean = np.array([318.888, 311.0417, 284.4444, 301.5909, 296.2000, 305.7692, 294.6429, 280.3571])\n",
"nstim = np.array([27, 24, 27, 22, 25, 26, 28, 28])\n",
"nsubjs = 8\n",
"\n",
Expand Down Expand Up @@ -660,9 +658,7 @@
" sigma_p = pm.Uniform(\"sigma_p\", lower=0, upper=3)\n",
" mu_p = pm.Normal(\"mu_p\", mu=0, tau=0.001)\n",
"\n",
" probitphi = pm.Normal(\n",
" \"probitphi\", mu=mu_p, sd=sigma_p, shape=nsubjs, testval=np.ones(nsubjs)\n",
" )\n",
" probitphi = pm.Normal(\"probitphi\", mu=mu_p, sd=sigma_p, shape=nsubjs, testval=np.ones(nsubjs))\n",
" phii = pm.Deterministic(\"phii\", Phi(probitphi))\n",
"\n",
" pi_ij = pm.Uniform(\"pi_ij\", lower=0, upper=1, shape=xij.shape)\n",
Expand Down Expand Up @@ -820,9 +816,7 @@
" sigma_p = pm.Uniform(\"sigma_p\", lower=0, upper=3)\n",
" mu_p = pm.Normal(\"mu_p\", mu=0, tau=0.001)\n",
"\n",
" probitphi = pm.Normal(\n",
" \"probitphi\", mu=mu_p, sd=sigma_p, shape=nsubjs, testval=np.ones(nsubjs)\n",
" )\n",
" probitphi = pm.Normal(\"probitphi\", mu=mu_p, sd=sigma_p, shape=nsubjs, testval=np.ones(nsubjs))\n",
" phii = pm.Deterministic(\"phii\", Phi(probitphi))\n",
"\n",
" pi_ij = pm.Uniform(\"pi_ij\", lower=0, upper=1, shape=xij.shape)\n",
Expand All @@ -831,9 +825,7 @@
" # zij_ = pm.Uniform('zij_',lower=0, upper=1, shape=xij.shape)\n",
"\n",
" zij = pm.Bernoulli(\"zij\", p=phii[sbjid], shape=xij.shape)\n",
" thetaij = pm.Deterministic(\n",
" \"thetaij\", tt.switch(tt.eq(zij, 0), tlogit(linerpredi), pi_ij)\n",
" )\n",
" thetaij = pm.Deterministic(\"thetaij\", tt.switch(tt.eq(zij, 0), tlogit(linerpredi), pi_ij))\n",
"\n",
" rij_ = pm.Binomial(\"rij\", p=thetaij, n=nij, observed=rij)"
]
Expand Down
Loading