This repository is the actively-maintained follow-up of https://github.com/klarna/jesse. Please update your references.
jesse (JSON Schema Erlang) is an implementation of a JSON Schema validator for Erlang.
jesse implements [Draft 03] (http://tools.ietf.org/html/draft-zyp-json-schema-03) and [Draft 04] (http://tools.ietf.org/html/draft-zyp-json-schema-04) of the specification. It supports all core schema definitions except:
- format
You can fire up jesse
from the CLI, with
bin/jesse path_to_json_schema -- path_to_json_instance [path_to_json_instance]
You can also output the result in JSON format, with --json
, and beautify it e.g. with python
bin/jesse path_to_json_schema --json -- path_to_json_instance [path_to_json_instance] | python -m json.tool
There are two ways of using jesse:
- to use jesse internal in-memory storage to keep all your schema definitions In this case jesse will look up a schema definition in its own storage, and then validate given a JSON instance.
- it is also possible to provide jesse with schema definitions when jesse is called.
NOTE: jesse doesn't have any parsing functionality. It currently works with four
formats: mochijson2, jiffy, jsx and Erlang 17+ maps, so JSON needs to be
parsed in advance, or you can specify a callback which jesse will use to
parse JSON.
In examples below and in jesse test suite jiffy parser is used.
- Use jesse's internal in-memory storage:
(parse JSON in advance)
1> Schema = jiffy:decode(<<"{\"items\": {\"type\": \"integer\"}}">>).
{[{<<"items">>,{[{<<"type">>,<<"integer">>}]}}]}
2> jesse:add_schema(some_key, Schema).
ok
3> Json1 = jiffy:decode(<<"[1, 2, 3]">>).
[1,2,3]
4> jesse:validate(some_key, Json1).
{ok,[1,2,3]}
5> Json2 = jiffy:decode(<<"[1, \"x\"]">>).
[1,<<"x">>]
6> jesse:validate(some_key, Json2).
{error,[{data_invalid,{[{<<"type">>,<<"integer">>}]},
wrong_type,<<"x">>,
[1]}]}
The [1]
in the error is the path in the original value to <<"x">>
where the
validation failed. See Validation errors below for the full error format.
(using a callback)
1> jesse:add_schema(some_key,
1> <<"{\"uniqueItems\": true}">>,
1> [{parser_fun, fun jiffy:decode/1}]).
ok
2> jesse:validate(some_key,
2> <<"[1, 2]">>,
2> [{parser_fun, fun jiffy:decode/1}]).
{ok,[1, 2]}
3> jesse:validate(some_key,
3> <<"[{\"foo\": \"bar\"}, {\"foo\": \"bar\"}] ">>,
3> [{parser_fun, fun jiffy:decode/1}]).
{error,[{data_invalid,{[{<<"uniqueItems">>,true}]},
{not_unique,{[{<<"foo">>,<<"bar">>}]}},
[{[{<<"foo">>,<<"bar">>}]},{[{<<"foo">>,<<"bar">>}]}],
[]}]}
- Call jesse with schema definition in place (do not use internal storage)
(parse JSON in advance)
1> Schema = jiffy:decode(<<"{\"pattern\": \"^a*$\"}">>).
{[{<<"pattern">>,<<"^a*$">>}]}
2> Json1 = jiffy:decode(<<"\"aaa\"">>).
<<"aaa">>
3> jesse:validate_with_schema(Schema, Json1).
{ok,<<"aaa">>}
4> Json2 = jiffy:decode(<<"\"abc\"">>).
<<"abc">>
5> jesse:validate_with_schema(Schema, Json2).
{error,[{data_invalid,{[{<<"pattern">>,<<"^a*$">>}]},
no_match,
<<"abc">>,[]}]}
(using a callback)
1> Schema = <<"{\"patternProperties\": {\"f.*o\": {\"type\": \"integer\"}}}">>.
<<"{\"patternProperties\": {\"f.*o\": {\"type\": \"integer\"}}}">>
2> jesse:validate_with_schema(Schema,
2> <<"{\"foo\": 1, \"foooooo\" : 2}">>,
2> [{parser_fun, fun jiffy:decode/1}]).
{ok,{[{<<"foo">>,1},{<<"foooooo">>,2}]}}
3> jesse:validate_with_schema(Schema,
3> <<"{\"foo\": \"bar\", \"fooooo\": 2}">>,
3> [{parser_fun, fun jiffy:decode/1}]).
{error,[{data_invalid,{[{<<"type">>,<<"integer">>}]},
wrong_type,<<"bar">>,
[<<"foo">>]}]}
- Since 0.4.0 it's possible to instruct jesse to collect errors, and not stop immediately when it finds an error in the given JSON instance:
1> Schema = <<"{\"properties\": {\"a\": {\"type\": \"integer\"}, \"b\": {\"type\": \"string\"}, \"c\": {\"type\": \"boolean\"}}}">>.
<<"{\"properties\": {\"a\": {\"type\": \"integer\"}, \"b\": {\"type\": \"string\"}, \"c\": {\"type\": \"boolean\"}}}">>
2> jesse:validate_with_schema(Schema,
2> <<"{\"a\": 1, \"b\": \"b\", \"c\": true}">>,
2> [{parser_fun, fun jiffy:decode/1}]).
{ok,{[{<<"a">>,1},{<<"b">>,<<"b">>},{<<"c">>,true}]}}
now let's change the value of the field "b" to an integer
3> jesse:validate_with_schema(Schema,
3> <<"{\"a\": 1, \"b\": 2, \"c\": true}">>,
3> [{parser_fun, fun jiffy:decode/1}]).
{error,[{data_invalid,{[{<<"type">>,<<"string">>}]},
wrong_type,2,
[<<"b">>]}]}
works as expected, but let's change the value of the field "c" as well
4> jesse:validate_with_schema(Schema,
4> <<"{\"a\": 1, \"b\": 2, \"c\": 3}">>,
4> [{parser_fun, fun jiffy:decode/1}]).
{error,[{data_invalid,{[{<<"type">>,<<"string">>}]},
wrong_type,2,
[<<"b">>]}]}
still works as expected, jesse stops validating as soon as finds an error.
Let's use the allowed_errors
option, and set it to 1
5> jesse:validate_with_schema(Schema,
5> <<"{\"a\": 1, \"b\": 2, \"c\": 3}">>,
5> [{parser_fun, fun jiffy:decode/1},
5> {allowed_errors, 1}]).
{error,[{data_invalid,{[{<<"type">>,<<"boolean">>}]},
wrong_type,3,
[<<"c">>]},
{data_invalid,{[{<<"type">>,<<"string">>}]},
wrong_type,2,
[<<"b">>]}]}
now we got a list of two errors.
Let's now change the value of the field "a" to a boolean
6> jesse:validate_with_schema(Schema,
6> <<"{\"a\": true, \"b\": 2, \"c\": 3}">>,
6> [{parser_fun, fun jiffy:decode/1},
6> {allowed_errors, 1}]).
{error,[{data_invalid,{[{<<"type">>,<<"string">>}]},
wrong_type,2,
[<<"b">>]},
{data_invalid,{[{<<"type">>,<<"integer">>}]},
wrong_type,true,
[<<"a">>]}]}
we stil got only two errors.
Let's try using 'infinity' as the argument for the allowed_errors
option
7> jesse:validate_with_schema(Schema,
7> <<"{\"a\": true, \"b\": 2, \"c\": 3}">>,
7> [{parser_fun, fun jiffy:decode/1},
7> {allowed_errors, infinity}]).
{error,[{data_invalid,{[{<<"type">>,<<"boolean">>}]},
wrong_type,3,
[<<"c">>]},
{data_invalid,{[{<<"type">>,<<"string">>}]},
wrong_type,2,
[<<"b">>]},
{data_invalid,{[{<<"type">>,<<"integer">>}]},
wrong_type,true,
[<<"a">>]}]}
Maps example
8> jesse:validate_with_schema(Schema,
8> <<"{\"a\": 1, \"b\": 2, \"c\": true}">>,
8> [{parser_fun, fun(Bin) -> jiffy:decode(Bin, [return_maps]) end}]).
{error,[{data_invalid,#{<<"type">> => <<"string">>},
wrong_type,2,
[<<"b">>]}]}
9> jesse:validate_with_schema(Schema,
9> <<"{\"a\": 1, \"b\": \"val\", \"c\": true}">>,
9> [{parser_fun, fun(Bin) -> jiffy:decode(Bin, [return_maps]) end}]).
{ok, #{<<"a">> => 1, <<"b">> => <<"val">>, <<"c">> => true}}
Currently there are two drafts of JSON Schema: draft3 and draft4. jesse supports only draft3, but the architecture allows to extend jesse to support any schema formats. To decide which validator to use jesse tries to read $schema property from the given schema, and checks if it's a supported one, otherwise it will return an error. If $schema property isn't provided in the given schema, jesse will use the default validator (currently the validator for draft3).
To specify which validator to use by default (if there's no $schema property in
the given schema), one should use 'default_schema_ver' option when call
jesse:validate/3
or jesse:validate_with_schema/3
, the value should be
a binary consisting a schema path,
i.e. <<"http://json-schema.org/draft-03/schema#">>.
The validation functions jesse:validate/2
and jesse:validate_with_schema/2,3
return {ok, Value}
on success and {error, ListOfErrors}
on failure. An error
is either data_invalid
or schema_invalid
.
A data_invalid
error is a tuple on the form {data_invalid, Schema, ErrorType, Value, Path}
where
- Schema is the part of the schema where validation failed
- ErrorType is the type of error, usually an atom such as
wrong_type
,not_in_range
orno_match
- Value is The part of the value where failed validation agains Schema
- Path is a path to where validation failed within the original value. The path
is a list of property names and zero-based array indices referencing the
properties and array items within a JSON document; e.g. in the JSON document
{"foo": [42, 43, 44]}
, the path[<<"foo">>, 0]
refers to the value 42. An empty list refers to the whole JSON document.
A schema_invalid
error is a tuple on the form {schema_invalid, Schema, ErrorType}
where
- Schema is the part of the schema which is invalid
- ErrorType is an atom such as
missing_id_field
or a tuple such as{wrong_type_dependency, Dependency}
.
-
pattern and patternProperty attributes:
jesse uses standard erlang module
re
for regexp matching, therefore there could be some incompatible regular expressions in schemas you define.From erlang docs: "re's matching algorithms are currently based on the PCRE library, but not all of the PCRE library is interfaced"
But most of common cases should work fine.
If you see something missing or incorrect, a pull request is most welcome!