Code for the paper "Personalized Re-ranking for Recommendation"
the toy data for training/validation/test
rec_train_set.sample.data-->8000 linesrec_validation_set.sample.data-->1000 linesrec_test_set.sample.data-->1000 lines
python exec.py \
--train true \
--train_set dataset/rec_train_set.sample.txt \
--validation_set dataset/rec_validation_set.sample.txt \
--batch_size 512 \
--train_epochs 100 \
--train_steps_per_epoch 1000 \
--validation_steps 2000 \
--early_stop_patience 10 \
--lr_per_step 4000 \
--d_feature 19 \
--pos_embedding_mode 0 \
--saved_model_name PRM_no_pv.h5python exec.py \
--train true \
--train_set dataset/rec_train_set.sample.txt \
--validation_set dataset/rec_validation_set.sample.txt \
--batch_size 512 \
--train_epochs 100 \
--train_steps_per_epoch 1000 \
--validation_steps 2000 \
--early_stop_patience 10 \
--lr_per_step 4000 \
--d_feature 19 \
--saved_model_name PRM_pv.h5python exec.py \
--test_set dataset/rec_test_set.sample.txt \
--validation_set dataset/rec_validation_set.sample.txt \
--batch_size 512 \
--saved_model_name PRM_pv.h5python metric.py dataset/rec_test_set.sample.txt.predict.out