Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow setting query transformers in the BaseRAGQA #76

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions python/pathway/xpacks/llm/question_answering.py
Original file line number Diff line number Diff line change
Expand Up @@ -307,6 +307,7 @@ class BaseRAGQuestionAnswerer(SummaryQuestionAnswerer):
A pw.udf function is expected. Defaults to ``pathway.xpacks.llm.prompts.prompt_qa``.
summarize_template: Template for text summarization. Defaults to ``pathway.xpacks.llm.prompts.prompt_summarize``.
search_topk: Top k parameter for the retrieval. Adjusts number of chunks in the context.
query_rewrite_method: Method for query transformation. Accepts values: 'hyde', 'default', or None. Defaults to None.


Example:
Expand Down Expand Up @@ -357,6 +358,7 @@ def __init__(
long_prompt_template: pw.UDF = prompts.prompt_qa,
summarize_template: pw.UDF = prompts.prompt_summarize,
search_topk: int = 6,
query_rewrite_method: str | None = None,
) -> None:

self.llm = llm
Expand All @@ -372,6 +374,7 @@ def __init__(
self.summarize_template = summarize_template

self.search_topk = search_topk
self.query_rewrite_method = query_rewrite_method

self.server: None | QASummaryRestServer = None
self._pending_endpoints: list[tuple] = []
Expand Down Expand Up @@ -402,6 +405,15 @@ def answer_query(self, pw_ai_queries: pw.Table) -> pw.Table:
"""Main function for RAG applications that answer questions
based on available information."""

if self.query_rewrite_method == "hyde":
pw_ai_queries += pw_ai_queries.select(
prompt=prompts.prompt_query_rewrite_hyde(pw.this.prompt)
)
elif self.query_rewrite_method == "default":
pw_ai_queries += pw_ai_queries.select(
prompt=prompts.prompt_query_rewrite(pw.this.prompt)
)

pw_ai_results = pw_ai_queries + self.indexer.retrieve_query(
pw_ai_queries.select(
metadata_filter=pw.this.filters,
Expand Down Expand Up @@ -653,6 +665,7 @@ def __init__(
factor: int = 2,
max_iterations: int = 4,
strict_prompt: bool = False,
query_rewrite_method: str | None = None,
) -> None:
super().__init__(
llm,
Expand All @@ -661,6 +674,7 @@ def __init__(
short_prompt_template=short_prompt_template,
long_prompt_template=long_prompt_template,
summarize_template=summarize_template,
query_rewrite_method=query_rewrite_method,
)
self.n_starting_documents = n_starting_documents
self.factor = factor
Expand All @@ -677,6 +691,15 @@ def answer_query(self, pw_ai_queries: pw.Table) -> pw.Table:
else:
data_column_name = "text"

if self.query_rewrite_method == "hyde":
pw_ai_queries += pw_ai_queries.select(
prompt=prompts.prompt_query_rewrite_hyde(pw.this.prompt)
)
elif self.query_rewrite_method == "default":
pw_ai_queries += pw_ai_queries.select(
prompt=prompts.prompt_query_rewrite(pw.this.prompt)
)

result = pw_ai_queries.select(
*pw.this,
result=answer_with_geometric_rag_strategy_from_index(
Expand Down
118 changes: 118 additions & 0 deletions python/pathway/xpacks/llm/tests/test_rag.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,3 +95,121 @@ def test_base_rag():
"""
),
)


def test_base_rag_with_query_rewrite():
schema = pw.schema_from_types(data=bytes, _metadata=dict)
input = pw.debug.table_from_rows(
schema=schema, rows=[("foo", {}), ("bar", {}), ("baz", {})]
)

vector_server = VectorStoreServer(
input,
embedder=fake_embeddings_model,
)

rag = BaseRAGQuestionAnswerer(
IdentityMockChat(),
vector_server,
short_prompt_template=_short_template,
long_prompt_template=_long_template,
summarize_template=_summarize_template,
search_topk=2,
query_rewrite_method="default",
)

answer_queries = pw.debug.table_from_rows(
schema=rag.AnswerQuerySchema,
rows=[
("foo", None, "gpt3.5", "short"),
("baz", None, "gpt4", "long"),
],
)

answer_output = rag.answer_query(answer_queries)
assert_table_equality(
answer_output.select(result=pw.this.result),
pw.debug.table_from_markdown(
"""
result
gpt3.5,short,foo,foo,bar
gpt4,long,baz,baz,bar
"""
),
)

summarize_query = pw.debug.table_from_rows(
schema=rag.SummarizeQuerySchema,
rows=[(["foo", "bar"], "gpt2")],
)

summarize_outputs = rag.summarize_query(summarize_query)

assert_table_equality(
summarize_outputs.select(result=pw.this.result),
pw.debug.table_from_markdown(
"""
result
gpt2,summarize,foo,bar
"""
),
)


def test_base_rag_with_hyde_query_rewrite():
schema = pw.schema_from_types(data=bytes, _metadata=dict)
input = pw.debug.table_from_rows(
schema=schema, rows=[("foo", {}), ("bar", {}), ("baz", {})]
)

vector_server = VectorStoreServer(
input,
embedder=fake_embeddings_model,
)

rag = BaseRAGQuestionAnswerer(
IdentityMockChat(),
vector_server,
short_prompt_template=_short_template,
long_prompt_template=_long_template,
summarize_template=_summarize_template,
search_topk=2,
query_rewrite_method="hyde",
)

answer_queries = pw.debug.table_from_rows(
schema=rag.AnswerQuerySchema,
rows=[
("foo", None, "gpt3.5", "short"),
("baz", None, "gpt4", "long"),
],
)

answer_output = rag.answer_query(answer_queries)
assert_table_equality(
answer_output.select(result=pw.this.result),
pw.debug.table_from_markdown(
"""
result
gpt3.5,short,foo,foo,bar
gpt4,long,baz,baz,bar
"""
),
)

summarize_query = pw.debug.table_from_rows(
schema=rag.SummarizeQuerySchema,
rows=[(["foo", "bar"], "gpt2")],
)

summarize_outputs = rag.summarize_query(summarize_query)

assert_table_equality(
summarize_outputs.select(result=pw.this.result),
pw.debug.table_from_markdown(
"""
result
gpt2,summarize,foo,bar
"""
),
)